ÁLGEBRA LINEAL I Programa para la Licenciatura en Física

BIBLIOGRAFÍA: G. Strang, Álgebra Lineal y sus Aplicaciones

P. Halmos, Espacios Vectoriales de Dimensión Finita L. Santaló, Vectores y Tensores con sus Aplicaciones

4 1/2 hs de Teórico por semana (67 1/2 hs por semestre) 3 hs de Práctico por semana (45 hs por semestre)

1) Repaso sobre sistemas lineales (3 clases)

- Sistemas de ecuaciones lineales, notación matricial, sistemas homogéneos, transformaciones elementales, eliminación gaussiana, teo. de Rouché-Frobenius para sistemas de ecuaciones 3 clases

2) Matrices y determinantes (9 clases)

- Operaciones con matrices: suma, producto, trasposición e inversión, matrices elementales 3 clases
- Combinaciones lineales, independencia lineal, concepto y definición de rango de una matriz, teo. de Rouché-Frobenius para matrices, relación entre rango y matriz inversa 3 clases
- Definición de determinante de una matriz, propiedades, métodos de cálculo de determinantes, método de Cramer 3 clases

3) Geometría en R³ (9 clases)

- Ecuaciones de rectas y planos 2 clases
- Producto escalar y vectorial, producto mixto, aplicaciones, intersección de rectas y planos, paralelismo y perpendicularidad 4 clases
- Cálculo de distancias, áreas y volúmenes 3 clases

4) Espacios vectoriales (11 clases)

- Definición de espacio vectorial, ejemplos 2 clases
- Definición de subespacio vectorial, ejemplos, intersección de subespacios 2 clases
- Concepto de dependencia e independencia lineal, ejemplos 2 clases
- Generadores, bases, coordenadas, concepto de dimensión 3 clases

- Suma de subespacios, suma directa y proyecciones 2 clases

5) Transformaciones lineales (7 clases)

- Definición de transformación lineal, ejemplos, operaciones con transformaciones 3 clases
- Matriz asociada, cambio de base, definiciones de núcleo e imagen 3 clases
- Teorema de las dimensiones 1 clase

ÁLGEBRA LINEAL II Programa para la Licenciatura en Física

BIBLIOGRAFÍA: G. Strang, Álgebra Lineal y sus Aplicaciones

P. Halmos, Espacios Vectoriales de Dimensión Finita

K.Hoffman & R.Kunze, Álgebra Lineal S. Lang, Álgebra Lineal (Tomo 2)

4 1/2 hs de Teórico por semana (67 1/2 hs por semestre) 3 hs de Práctico por semana (45 hs por semestre)

1) Valores y vectores propios (12 clases)

Subespacios invariantes. Definición de valor y de vector propio. Diagonalización. Forma de Jordan de matrices de orden 2 y de orden 3. obtención de la forma de Jordan de una matriz. Teorema de Cayley-Hamilton.

2) Espacios vectoriales con producto interno (12 clases)

Definición de producto interno (euclideo y hermítico). Ejemplos. Longitud, área y ortogonalidad. Bases ortogonales. Complemento ortogonal. Proyección ortogonal.

3) Transformaciones lineales en espacios con producto interno (10 clases)

Adjunta. Transformaciones lineales autoadjuntas. Transformaciones lineales ortogonales. Transformaciones lineales unitarias. Transformaciones lineales normales. Teorema Espectral. Transformaciones lineales afines y movimientos en R^2 y R^3 .

4) Formas bilineales y cuadráticas (5 clases)

Definiciones. Ley de inercia . Clasificación de una forma cuadrática. Diagonalización simultánea. Cónicas y cuadráticas.