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Fig. 11.14. Neutron capture paths for the s-process and r-
process (from left to right). The s-process follows a path along
the line of beta stability. The stable r-process nuclei (small
circles) result from beta decay of their neutron rich progenitors
on the shaded path shown lower. Beta decay occurs along
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straight lines A =const. The closed neutron shells in nuclei
at N =50, 82 and 126 correspond to abundance peaks in s-
process nuclei at A = 88, 138 and 208, and in r-process nuclei
at A = 80, 130 and 195. (Seeger, P.A., Fowler, W.A., Clayton,
D.D. (1965): Astrophys. J. Suppl. 11, 121)



Figure 15.1 The sky area of
the globule Barnard 68 in the
Ophiuchus star-forming region,
imaged in six different wave-
bands, clockwise from the blue to
the near-infrared spectral region.
The obscuration caused by the
cloud diminishes dramatically with
increasing wavelength, implying
that most of the dust is in the
form of sub-um grains. Because
the outer regions of the cloud
are less dense than the inner
ones, the apparent size of the
cloud also decreases as wavelength
increases, with more background
stars shining through the outer
parts. (European Southern Obser-
vatory PR Photo 29b/99)















Fig. 5.3 A diagram
illustrating star formation.
The star forms following the
collapse of a rotating cloud of
interstellar material, which
flattens into a disk,
perpendicular to its rotation
axis. The stellar wind, which
is confined by the magnetic
field, escapes in two lobes
that are aligned with the

rotation axis (After
Acker, 2005)
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5 arcsec (750 AU)

Figure 10.2: The Herbig-Haro object HH30, at a distance of
~150 pc, observed by HST. Two thin jets flow outwards from the
young stellar object in the centre. The two lenticular regions are
scattered light from dust in the disk. The dark central lane is the
accretion disk observed edge-on (courtesy NASA/ESA/STScI).
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Fig. 2.1. Classification scheme for Young Stellar Objects.
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Fig. 5.22 Coronographic images of the disk of B Pic obtained with the STIS instrument on the
HST. Top: overall image: bottom: enlargement of the central portion, with a vertical exaggeration
of 4 times, to reveal the warping of the disk. The intensity (and thus the quantity of dust) is a
maximum near the equatorial plane (After Heap et al., 2000)
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Figure 10.4: Examples of imaged debris disks: (a) HD 141569 observed at 1.1 pum with HST-NICMOS (Weinberger et al., 1999, Fig-
ure 1). (b) HR 4796A, observed in the optical with HST-STIS (Schneider et al., 2009a, Figure 2; this version courtesy G. Schneider).
(c) p Pic, from combined ESO 3.6-m ADONIS imaging in 1996 (outer region), and 3.6 um observations with VLT-NACO (inner re-
gion) revealing the probably planet, p Pic b (Lagrange et al., 2009b, this version courtesy A.M. Lagrange, D. Ehrenreich, and ESO).
In all cases, the geometric central structures are artefacts of the coronagraphic imaging.
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Fig. 4.7. How planetesimals form within the classical Goldreich—Ward scenario.
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Fig. 16.1. The surface density of the primordial solar nebula wvs.  heliocentric  distance,
obiained by restoring the planeis w0 solar composition and spreading the resoliing masses through
contignous  zones sorrounding  the present orbits. The zone boundaries are taken as the arithmetic
means of adjacemt orbits (for Mercury and Neptumne, the zones are assumed 1o cover  eqgual
distances inward and ootward from their orbits). The horizontal bars in the figure show the
resulting  2one  widths, and the wertical error bars reflect the estimated uncertainties in  planctary
compositions. For the asteroids, an original mass ranging between the present mass (= 5 107"
Mg) and 25 times this value has been assumed. (Figure adopted from Weidenschilling (1977)).
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Fig. 2.5. The physics underlying radiative equilibrium models for protoplanetary
disks. Stellar radiation is absorbed in a thin surface layer by dust, which reradiates
in the infrared both upward into space and downward where it 1s absorbed once
more and acts to heat the disk interior. The local emission from the disk is a
superposition of radiation from the hot surface layer and the cooler interior.
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Figure 10.3: Schematic of a layered accretion disk. Inside
0.1AU, where T ~ 102 K, collisional ionisation ensures magne-
torotational instability, and enables accretion. At large radlii,
cosmic rays penetrate the entire disk. At intermediate radii,
they ionise a layer of thickness ~ 10° kg m™2 on either side. Be-
tween the active layers is a ‘dead zone” where turbulence and
accretion are inhibited. Adapted from Gammie (1996, Figure 1).
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Figure 15.5 Flow chart of major reactions during fully equi-
librated cooling of solar nebula material from 2000 to 5 K.
The fifteen most abundant elements are listed across the
top, and directly beneath are the dominant gas species of
each element at 2000 K. The staircase curve separates gases
from condensed phases. (Barshay and Lewis 1976)
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Figure 15.6 Amount and composition of major condensed
components formed during fully equilibrated cooling of
solar nebula material. (Lodders 2010)
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Fig. 1.1. The surface density in gas (upper line) and solids (lower broken line) as a
function of radius in Hayashi’s minimum mass Solar Nebula. The dashed vertical
line denotes the location of the snowline.
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Fig. 4.3. The minimum time scale for the radial drift of solid particles as a function
of radius, for disk models in which ¥ o< 7~! and //r = 0.025 (uppermost line).
h/r =0.05,or h/r = 0.075 (bottom line).



(@)

Eccentricity

0.6
0.4

0.2 -

08 -

0.6
0.4
0.2

0 Myr

10 Myr

* —
L3
g "":'0
u
Y
" l:'n-gb - J'?'gu % '?'C}ue ]
ﬂb -ﬂ& -] .
* rﬁﬂ "’b * °

ﬁ-@‘f “’E%Q S
L T Oﬁ'ﬁu 2

0

.Gp 1'-:-"'eehﬁ.,.
0.5 1

III|III|III|III1III
III|III|III|III|III|III|III|III

15 2 25 3 35 4
100 Myr .

B R °“" S “‘# _
e O e A D B
A
0 05 A1 1i5 2 25 3 35 4

0.6
0.4
0.2

0.8 -

0.6
0.4
0.2

| 30 Myr

o =, L o n"dv —
S AL
IIII’}F‘-“:‘I g\{l}'

'Lll.n'lil III|III|III|III|III

0

o5 1 15 2 25 3 35 4

250 Myr

Semimajor Axis (AU)



Figure 15.7 Schematic diagram of the gravitational focus-
ing of planetesimal trajectories by an accreting plane-
tary embryo or planet. The critical trajectory that collides
tangentially with the planet has an unperturbed impact
parameter, b, larger than the radius of the planet, b > R.
(Adapted from Brownlee and Kress 2007)
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Figure 13.22 The mass of a giant
planet that grows to 1 M9, is shown
as a function of time according to one
particular simulation based upon the
core nucleated accretion model. The
planet’s total mass is represented by
the dot-dashed curve, the mass of
the solid component is given by the
solid curve, and the dotted curve rep-
resents the gas mass. The solid core
grows rapidly by runaway accretion
in the first 4 x 10° years. The rate of
solid body accumulation decreases
once the planet has accreted nearly
all of the condensed material within
its gravitational reach. The envelope
accumulates gradually, with its set-
tling rate determined by its ability to
radiate away the energy of accretion.
Eventually, the planet becomes suffi-
ciently cool and massive that gas can
be accreted rapidly. This simulation
is for growth at 5.2 AU froma 1 Mg
star, with a local surface mass density
of solids equal to 10 g/lcm?. (Lissauer
et al. 2009)
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Figure 10.11: Giant planet formation by core accretion. Simulations correspond to the cases of Jupiter, Saturn, and Uranus (models
J1, S1, and Ul from Table III of Pollack et al. 1996). Values shown are the initial conditions for the planetesimal and gas surface
densities Zp and Zgas, the initial embryo semi-major axis a, and nebula temperature T,qp,. Simulations begin with an embryo
mass comparable to that of Mars, with almost all its mass in a high-Z core. Planetesimals have a radius of 100 km. The results
show, as a function of time, the total planet mass M;,5], and the corresponding contributions from accumulated solids Mgg}id,
and accumulated gas Mgas (dashed, solid, and dotted lines respectively). From Pollack et al. (1996, Figures 1, 4, 5).



Figure 10.14: Type I and type Il migration. Simulations of the interaction between a planet on a circular orbit with a laminar (non-
turbulent) protoplanetary disk, computed from a two-dimensional isothermal hydrodynamic code with a constant kinematic
viscosity: (a) in type I migration, a relatively low-mass planet excites a wave in the gas disk, but does not significantly perturb
the azimuthally-averaged surface density profile (inset); (b) in type II migration, a more massive planet (here of 10Mj) clears an
annular gap, within which the surface density is a small fraction of its unperturbed value. As the disk evolves, the planet follows
the motion of the gas (either inward or outward) while remaining within the gap. From Armitage & Rice (2005, Figure 1).
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Fi1G. 3. Time variation of the semimajor axes of the
four Jovian planets as a result of exchange of angular
momentum with planetesimals. These results are
taken from case 7. The initial semimajor axes are a; =
5.203 AU, a5 =954 AU,aqy=20AUand ay =30 AU.
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FiG. 1. A schematic diagram to illustrate the outward radial migration of
Neptune and its exterior orbital resonances during the late stages of planet
formation. The distance from the Sun is along the horizontal direction. Nep-
tune’s outward orbital migration is shown along the path marked N—N. For
clarity, only two first-order resonances (3:2 and 2:1) are shown (dotted
lines). A “Pluto” in an initially circular, nonresonant orbit beyond Neptune
could have been captured into the 3:2 resonance and would evolve along the
solid line path indicated by P—3/2.
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Figure 12.4: The starting configuration of the outer solar system planets given by the Nice model, with their subsequent orbital
evolution from an N-body simulation with 35Mg, of disk planetesimals in 3500 particles out to 30AU. The three curves for each
planet indicate the semi-major axis a, and their minimum (q) and maximum (()) heliocentric distances. The vertical dashed
line marks the epoch of the 1:2 Jupiter-Saturn mean motion resonance capture. During subsequent dynamical interactions, the
eccentricities of Uranus and Neptune can exceed 0.5, and in 50% of simulation runs (including this), they exchange orbits. The
maximum eccentricity over the last 2 Myr of evolution is indicated. From Tsiganis et al. (2005, Figure 1), by permission from
Macmillan Publishers Ltd, Nature, ©@2005.



x (AU) x (AU)

Figure 12.5: Numerical simulations of the lunar heavy bom-
bardment. Planetary orbits and disk planetesimals are pro-
jected on the initial mean orbital plane. The four giant planets
were initially on nearly circular coplanar orbits, with a = 5.45,
8.18, 11.5 and 14.2 AU, and the planetesimal disk, of total mass
35Meg, extended from 15.5-34 AU. Panels represent the system
at (a) the start of planetary migration (100 Myr); (b) just before
the start of the lunar heavy bombardment (879 Myr); (c) just af-
ter its start (882 Myr); and (d) 200 Myr later when only 3% of the
initial disk mass remains, and the planets have achieved their
final orbits. From Gomes et al. (2005, Figure 2), by permission
from Macmillan Publishers Ltd, Nature, ©2005.
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Figure 10.1: Chronology of the early stages of planet formation,
from an arbitrary initial time, showing some of the main evo-
lutionary stages, some representative astronomical examples,
and some specific epochs relevant for the solar system (see also
§12.5). The figure is an adaptation of a more detailed chronaol-
ogy given by Apai & Lauretta (2010, Figure 1.3).
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Figure 10.6: Schematic of the growth of planets, starting with sub-micron dust, and extending up to the terrestrial planets in the
inner disk, and the gas giants in the outer disk. Some indicative time scales are given, although some intervals, especially around
the meter-size barrier, remain highly uncertain.
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Figure 10.8: The effect of gravity on shape and structure as a
function of mass. Some solar system objects are given as ex-
amples. The radii of brown dwarfs are approximately constant
above ~ 13Mj, and their densities fall off the plot to the right.
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Figure 12.7: Relative concentrations of CO>, CHy, and O2 over
Earth’s history. Key epochs are: (a) high concentrations of CO2
compensate for the lower luminosity of the voung Sun; (b) the
first microscopic life begins consuming CO2; (c) methanogens
start to contribute to the atmosphere; (d) the appearance of O, -
producing bacteria; (e) the appearance of atmospheric O2. The
epoch of the origin of the CHy-producing microbes is some-
what arbitrary. Adapted from Kasting (2004, Figure 3).
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