CIENCIAS PLANETARIAS

PRACTICO V: Interiores

- 1. Sea un asteroide rocoso ($\rho = 3.5 \text{ g cm}^{-3}$) de radio R y sabiendo que su resistencia a la compresión es $K = 2 \times 10^9$ dyn cm⁻² calcular el radio mínimo para que al menos la mitad de su masa se encuentre significativamente comprimida. Idem para uno metálico de $\rho = 8.0 \text{ g cm}^{-3} \text{ y } K = 4 \times 10^9 \text{ dyn cm}^{-2}$.
- 2. Asumiendo densidad constante y equilibrio hidrostático, estimar la presión central en la Tierra y en Júpiter. Comparar con los valores obtenidos por métodos más precisos.
- 3. Utilizando los datos de las tablas E2 y E5 de FPS calcular el cociente $I/(MR^2)$ para la Tierra y la Luna usando la relación de Radau-Darwin. Comparar con los valores reales de la tabla E15 y explicar los resultados. ¿Cuál tiene un núcleo más diferenciado?
- 4. Asumiendo que el interior de Mercurio está constituído por 2 zonas homogéneas: un núcleo interior de Fe de $\rho=8.3$ g cm⁻³ y un manto rocoso de densidad $\rho=3.5$ g cm⁻³, calcular el radio del núcleo, el coeficiente de inercia $\alpha=I/MR^2$ y la presión central P_c . Datos: R=2440 km, $M=3.3\times10^{26}$ gr.
- 5. Asumiendo que el interior de Saturno puede ser representado por un polítropo de la forma $P = k\rho^2$ en equilibrio hidrostático, escribir la ecuación para $\rho(r)$ y probar que la solución es del tipo $\rho(r) = \rho_c \sin(ar)/ar$. Asumiendo que en la superficie $\rho(R_S) = 0$, hallar la densidad central ρ_c . Datos: $M_S = 5.7 \times 10^{29}$ gr, $R_S = 6 \times 10^9$ cm.
- 6. Calcular la cantidad total de energía interna perdida por la Tierra asumiendo que el flujo superficial o luminosidad intrínseca es 75 erg cm $^{-2}$ seg $^{-1}$ y que se ha mantenido constante a lo largo de la vida del sistema solar. Calcular la temperatura que tendría la Tierra si ese flujo no se hubiese escapado. Tomar como calor específico de las rocas $c_P = 1.2 \times 10^7$ erg gr $^{-1}$ K $^{-1}$. ¿Cuánto debería contraerse anualmente la Tierra para producir su luminosidad intrínseca por el mecanismo de contracción gravitacional?
- 7. Suponiendo que la luminosidad intrínseca observada de la Tierra es enteramente producida por materiales radiogénicos y suponiendo que la Luna tiene igual composición que la Tierra estimar el flujo superficial de la Luna.
- 8. Si toda la masa de la Luna fuera acretada sobre la Tierra formando una capa esférica, estimar el incremento en la temperatura que dicha capa experimentaría. Suponer un material rocoso: $\rho = 3.5 \text{ y } c_P = 1.2 \times 10^7 \text{ erg gr}^{-1} \text{K}^{-1}$.
- 9. Compare la luminosidad intrínseca de la Tierra con la solar reflejada y la infrarroja reemitida suponiendo albedo Bond A = 0.31.
- 10. La litósfera es la capa externa sólida del manto superior, el cual se encuentra en estado sólido si T < 1200 K. Considerando que la conductividad térmica de la Tierra es $K_T = 3 \times 10^5$ erg cm⁻¹ s⁻¹ K⁻¹ y que el flujo de calor es 75 erg cm⁻² s⁻¹ estimar el espesor de la litósfera terrestre.
- 11. El tiempo requerido por ondas P y S para alcanzar una estación que se encuentra a un ángulo al centro terrestre de 40° del lugar donde se produjo un terremoto es de 7.5 min y 14 min respectivamente. Suponiendo que las ondas se propagan en línea recta a través de un medio elástico uniforme de densidad $\rho = 4$, calcular el módulo de incompresibilidad K_m y el coeficiente de rigidez μ_{rg} .