Impact craters and evolution of planetary surfaces

Impact craters and evolution of planetary surfaces

- 1. Introduction
- 2. Elastic waves in solids and shock waves 2.1 Propagation of elastic waves
 - 2.2 Hugoniot equations
 - 2.3 Shock wave propagation and thermodynamics of impact
- 3. Formation and evolution of an impact crater
 - 3.1 Contact and compression
 - 3.2 Excavation flow and ejecta emplacement
 - 3.3 The case of large impact craters and basins
 - 3.4 Post-impact evolution of an impact crater (tectonism, erosion)
- 4. Criteria on the field
 - 4.1 Morphologic and geometric evidences
 - 4.2 Petrologic and mineralogic evidences
- 5. Impact craters as a tool for the sounding of the sub-surface of solid planets
- 6. Impact craters as a tool for the datation of planetary surfaces

Introduction

Impact craters = a fundamental process in the evolution of planetary surfaces. The terrestrial record

Crater Diameter	Approximate Projectile Diameter	Energy (J)	Mean Impact Interval (T _{mean} , Whole Earth)	Comparable Terrestrial Event
35 m	2 m	2.1 E + 12	4 yr	Minimum damaging earthquake (M = 5) Largest chemical explosion experiment ("Snowball"; Canada, 1964)
75 m	4 m	1.9 E + 13	15 yr	Largest chemical explosion (Heligoland Fortifications, 1947)
120 m	6 m	8.3 E + 13	35 yr	Atomic bomb explosion (Hiroshima, Japan, 1945)
450 m	23 m	4.2 E + 15	370 yr	"Typical" hydrogen-bomb explosion (1 MT)
1 km	50 m	4.6 E + 16	1,600 yr	Wolfe Creek, Australia (D = 0.875 km) Pretoria Salt Pan, South Africa (D = 1.13 km)
1.1 km	55 m	6.2 E + 16	1,900 yr	Barringer Meteor Crater, Arizona (D = 1.2 km) Tunguska explosion, Siberia, Russia (1908) Mt. St. Helens, Washington (1981) (blast only)
1.8 km	90 m	2.5 E + 17	4,400 yr	San Francisco earthquake (1906) (M = 8.4) Largest hydrogen-bomb detonation (68 MT)
3.1 km	155 m	1.3 E + 18	12,000 yr	Mt. St. Helens, Washington eruption (1981) (total energy, including thermal)

Introdu	ction					
	Crater Diameter	Approximate Projectile Diameter	Energy (J)	Mean Impact Interval $(T_{mean}, Whole Earth)$	Comparable Terrestrial Event	
	5 km	250 m	5.7 E + 18	28,500 yr	Gardnos, Norway (D = 5.0 km) Goat Paddock, Australia (D = 5.1 km)	
	6.9 km	350 m	1.5 E + 15	51,000 yr	Largest recorded earthquake (Chile, 1960; M = 9.6)	
	7.2 km	360 m	1.7 E + 15	55,000 yr	Krakatoa volcano eruption (Indonesia, 1883) (Total energy, including thermal)	
	10 km	500 m	4.6 E + 19	100,000 yr	Lake Mien, Sweden (D = 9 km) Bosumtwi, Ghana (D = 10.5 km) Oasis, Libya (D = 11.5 km)	
	12.2 km	610 m	8.4 E + 19	142,000 yr	Tambora volcano eruption (Indonesia, 1815) (Total energy, including thermal)	
	20 km	1 km	3.7 E + 20	350,000 yr	Haughton Dome, Canada (D = 20.5 km) Rochechouart, France (D = 23 km) Ries Crater, Germany (D = 24 km)	
	31 km	1.5 km	1.3 E + 21	720,000 yr	Total annual energy release from Earth (Heat flow, seismic, volcanic)	
	50 km	2.5 km	5.8 E + 21	4.5 m.y.	Montagnais, Canada (D = 45 km) Charlevoix, Canada (D = 54 km) Siljan, Sweden (D = 55 km)	
	100 km	5 km	4.6 E + 22	26 m.y.	Manicouagan, Canada (D = 100 km) Popigai, Russia (D = 100 km)	
	200 km	10 km	3.7 E + 23	150 m.y.	Largest known terrestrial impact structures (original diameters 200–300 km) Sudbury, Canada; Vredefort, South Africa; Chicxulub, Mexico	

Introducti	on
	The study of terrestrial impact structure and the search for new impact structures: which objectives ?
	-Constrain the cratering history (impact flux) on Earth and for the solar system
	-A contribution to the understanding of physical processes occuring during the formation of the solar system (planetary growth and accretation, thermal state of proto-planets, Moon formation)
	 -Impact craters = natural laboratories for the understanding of physical processes occurring during the propagation of strong shock waves in geological media.
	Give more evidences to the fact that impact cratering is a geological process as import as other geological processes usually taught in Earth sciences classes !

2.1 Elastic waves and shock wave propagation in so	ids.
--	------

Plastic yielding and Hugoniot elastic limit Hugoniot elastic limit for some minerals and rocks

	Hugoniot Elastic Limit		
Material	$(GPa)^{\sigma_{\text{HEL}}}$	Source	
Single Crystals:			
Periclase (MgO)	2.5	Grady (1977)	
Feldspar	3.	Grady and Murri (1976)	
Quartz (SiO ₂)	4.5-14.5*	Duvall and Graham (1977)	
Olivine (Mg,SiO4)	9.	Raikes and Ahrens(1979)	
Corundum (Al ₂ O ₃)	12-21*	Grady (1980)	
Rocks:			
Halite	0.09	Larson (1982)	
Blair Dolomite	0.26†	Larson (1977)	
Vermont Marble	0.9	Grady (1977)	
Westerly Granite	~ 3	Larson (1977)	
Lunar Gabbroic Anorthosite	3.5	Ahrens et al. (1973)	
Granodiorite	4.5	Borg (1972)	
Metals:			
Armco Iron	0.6	Rice et al. (1958)	
SAE 1040 Steel	1.2	Rice et al. (1958)	

†Rate dependence observed.

2.2 Hugoniot equations.	
1. Introduction	
2. Elastic waves in solids and shock waves 2.1 Propagation of elastic waves	
2.2 Hugoniot equations 2.3 Shock wave propagation and thermodynamic	s of impact
3. Formation and evolution of an impact crater 3.1 Contact and compression	
3.2 Excavation now and ejecta emplacement 3.3 The case of large impact craters and basins 3.4 Post-impact evolution of an impact crater (teo	ctonism, erosion)
4. Criteria on the field 4.1 Morphologic and geometric evidences 4.2 Petrologic and mineralogic evidences	
5. Impact craters as a tool for the sounding of the su planets	ub-surface of solid
6. Impact craters as a tool for the datation of planeta	ary surfaces

2.2 Hugoniot equations. $\begin{aligned} \rho_0[l_u - U(t'-t)]E_0\rho(l_s + U(t'-t) - u_p(t'-t)]E + \\ \frac{1}{2}\rho u_p^2(-U(t'-t) - u_p(t'-t)) - \rho_0 l_u E_0 - \rho l_s E - \frac{1}{2}\rho u_p^2 l_s = P u_p(t'-t) \end{aligned}$ After few simplifications: $-\rho_0 U E_0 + \rho E (U - u_p) + \frac{1}{2}\rho u_p^2 (U - u_p) = P u_p$ Using the first Hugoniot equation: $-\rho_0 U E_0 + E \rho_0 U + \frac{1}{2}\rho_0 U u_p^2 = P u_p$ $\rho_0 U (E - E_0) + \frac{1}{2}\rho_0 u_p^2 U = P u_p$

2.2 Hugoniot equations.

$$\rho_0 U(E - E_0) + \frac{1}{2}\rho_0 u_p^2 U = P u_p$$

$$\rho_0 V_0 \sqrt{\frac{P - P_0}{V_0 - V}} (E - E_0) + \frac{1}{2}\rho_0 (P - P_0)(V_0 - V) V_0 \sqrt{\frac{P - P_0}{V_0 - V}} = P \sqrt{(P - P_0)(V - V_0)}$$
After few simplications...
$$E - E_0 + \frac{1}{2} (P - P_0) (V_0 - V) = P (V_0 - V)$$
Third equation of Hugoniot
$$E - E_0 = \frac{1}{2} (P + P_0) (V_0 - V)$$

Plastic Hugoniot e	yielding and Hugoniot e lastic limit for some mine	lastic limit trals and rocks
	Hugoniot Elastic Limit	
Material	$^{\sigma_{\text{HEL}}}(GPa)$	Source
Single Crystals:		
Periclase (MgO)	2.5	Grady (1977)
Feldspar	3.	Grady and Murri (1976)
Quartz (SiO ₂)	4.5-14.5*	Duvall and Graham (1977)
Olivine (Mg ₂ SiO ₄)	9.	Raikes and Ahrens(1979)
Corundum (Al ₂ O ₃)	12-21*	Grady (1980)
Rocks:		
Halite	0.09	Larson (1982)
Blair Dolomite	0.26†	Larson (1977)
Vermont Marble	0.9	Grady (1977)
Westerly Granite	~ 3	Larson (1977)
Lunar Gabbroic	3.5	Ahrens et al. (1973)
Anorthosite		
Granodiorite	4.5	Borg (1972)
Metals:		
Armco Iron	0.6	Rice et al. (1958)
SAE 1040 Steel	1.2	Rice et al. (1958)

†Rate dependence observed.

