PEDECIBA - Maestría en Física opción Astronomía

PARCIAL MECANICA CELESTE

Entrega: 23:59 hs del 13 de Junio 2022

Mauro Cabrera: centauro.

Considere un sistema compuesto por el Sol y un planeta de masa $m=2\times 10^{-3}M_{\odot}$ con elementos $a_p=5.2$ ua, $e_p=0.1$, $i_p=\varpi_p=0$. Consideraremos la dinámica secular de una particula cuyos elementos iniciales son $(a,e,i,\varpi,\Omega)=(13,0.12,10^o,0^o,0^o)$. Supondremos que la función perturbadora secular esta dada por la expresión aproximada:

$$R_{sec} \simeq \frac{k^2 m}{a} \left[1 + \alpha^2 \left(1/4 + \frac{3}{8} (e^2 + e_p^2) - \frac{3}{2} (\sin \frac{i}{2})^2 \right) - \frac{9}{8} \alpha^3 e e_p \cos(\varpi_p - \varpi) \right]$$

- 1. ¿Bajo qué hipótesis es válida esa expresión para R_{sec} ?
- 2. Probar que en la dinámica secular definida por R_{sec} resulta $C = \sqrt{1 e^2}(1 \cos i)$ constante y calcular su valor.
- 3. Probar que si $e_p = 0$ resulta que (e, i) son constantes.
- 4. Probar que si $e_p = 0$ resulta que $d\varpi/dt$ y $d\Omega/dt$ son constantes y calcularlas en grados por siglo. A partir de ahora volvemos a considerar el caso planeta excéntrico.
- 5. Volviendo al caso $e_p = 0.1$ calcule y grafique curvas de nivel $R_{sec}(\varpi, e)$ para el valor de C correspondiente a la particula.
- 6. A partir de esas curvas determine aproximadamente la máxima y mínima excentricidad que tendrá la particula en su evolución. Determine aproximadamente la máxima y mínima inclinación.
- 7. Usando un integrador numérico obtenga la evolución orbital durante 500000 años de la particula. Grafique $(a, e, i, \varpi, \Omega)$ y C(t) y discuta las diferencias entre el resultado teórico y el numérico.
- 8. Graficando (k, h) y (q, p) obtenga aproximadamente las componentes forzadas y propias de (e, i).
- 9. Probar que para bajas inclinaciones $d\Omega/dt$ nunca se anula.
- 10. A partir de la figura con curvas de nivel de $R_{sec}(\varpi, e)$ encuentre aproximadamente un valor de (ϖ, e, i) para el cual $\varpi(t)$ presenta una muy pequeña oscilación (punto de equilibrio).
- 11. Escriba las ecuaciones que en forma analítica definen los puntos de equilibrio (ϖ_0, e_0) de $R_{sec}(\varpi, e)$, o sea puntos en los cuales los elementos (ϖ, e, i) permanecen fijos. **A partir de esas ecuaciones** y usando las aproximaciones que estime conveniente estime aproximadamente esos valores (ϖ_0, e_0, i_0) .
- 12. Usando un integrador numérico obtenga la evolución orbital durante 500000 años de la particula con las condiciones iniciales del punto de equilibrio del item anterior y grafique la evolucion temporal de los elementos orbitales $(a, e, i, \Omega, \varpi)$ o las trayectorias en los planos (k, h) y (q, p).
- 13. Si la masa del perturbador fuera diferente, ¿qué cambiaría en la evolución del asteroide? Puede comprobarlo con un experimento numérico si lo desea.