Mars Facts and Geology

Angelo Pio Rossi, European Space Agency RSSD SCI-SM arossi@rssd.esa.int

0

We did not go this way....

Can We Get to MARS?

iel, Guiled Birdle Development Dekkon, Rollman Anneel, Basterille, Alabasta

Man's trail-blacing journey to Mars will be a locath-taking experience-with problems to match

...but with robots

The saga of Mars Exploration

- Began in 1960 with the first attempts by USSR to launch 2 s/c designed for Mars flybys.
- Since then, more than 30 space missions to Mars were undertaken by USSR, USA, Europe, and Japan.
- 50 per cent of these missions performed successfully.

Origins of exploration

Mars Exploration has its roots in the 1950s

- The goal of many early rocket and space exploration pioneers
- The dream of von Braun in Germany/U.S. and Korolev in the USSR
- Enabled by the Cold War development of ICBMs
- Competition between the US and USSR

But it first got off the ground in 1960

- In 1959 Korelev had developed a 4-stage 'Molniya' planetary launch vehicle
 - derived from the 2-stage R-7 ICBM that had launched Sputnik in 1957
 - 3-stage 'Luna' version had been developed for lunar missions in 1958-60
- □ With success of Lunas 1-3, Korelev built a new planetary s/c for Mars and Venus.
- The first two were built for launch to Mars in Oct 1960
- New large 3rd stage failed on both launches

(by courtesy of W.T. Huntress)

1964: American succeed at Mars

Mariner 4

- First launch fails Mariner 3
- Second launch succeeds Nov 28,1964
- Successful flyby on July 15, 1965
- Craters, not canals!

The famous picture No.II

First s/c image of Mars

1971: American Mariner 9 orbiter

- First Mars orbiter
- Mapped entire planet
- Discovered tectonic structures,
- Giant volcanoes and valleys
- Mars begins to look more Earth-like!

Mariner 9

Olympus Mons caldera

1973: USSR goes all out

Can't fly orbiter/lander combination Knows about plans for Viking lander (first 73 then 75) Determined to beat US to land before Viking Four large s/c! Use 71 vehicle designs to save money

Mars 4 flyby image

Mars 5 orbiter image

1975: the American Viking Lander

- Two orbiters & landers at Mars
- Spectacular images from orbit
- and from the surface
- First successful landers, but
- unsuccessful (?) search for life
- Interest in Mars wanes after Viking

1996: Russia tries again

Mars 96

- an ambitious, comprehensive mission
 - large orbiter with 2 landers, 2 penetrators
 - rover and balloon abandoned in 1994
 - heavy international investment
 - launch fails in Nov 1996

Mars 96 penetrator

Mars 96 small lander

1996: New approach, lander & orbiter

Mars Pathfinder lander succeeds

- about 5% the cost of Viking
- pathfinds new approach to low-cost s/c
- more technology test than science
- including first successful rover on Mars
- revives public interest in Mars

1996: Mars Global Surveyor

orbiter

Succeeds and keeps working until late 2006 First science mission in new US Mars program Carries first third of lost Mars Observer payload Continuous science and lander data relay activity

Finds layering and signs of water!

2003: US/Europe/Japan

Mars Express

Mars Exploration Rovers

Mars is now the target of true international exploration!

Nozomi

The major steps of Mars exploration

- Mariner 9 (1971)
- Viking Orbiters & Landers (1975)
- Mars Pathfinder (1996)
- Mars Global Surveyor (1996)
- Mars Odyssey (2001)
- Mars Express (2003)
- Mars Exploration Rovers (2003)
- Mars Reconnaissance Orbiter (2005)

Dao Vallis (HRSC MEX)

What's next?

□ NASA Mars Exploration Program:

- 2005: Mars Reconnaissance Orbiter
- 2007: Phoenix
- 2009: Mars Science Laboratory
- **ESA** Aurora Programme

• • •

. . . .

- ExoMars (2011)
- Mars Sample return

Mars in the Solar System

Mars facts

Distances<u>:</u>

I.52 AU from Sun (or 227,940,000 km) 58,400,000 km to Earth

Dimensions:

Diameter: 6794 km Mass: 6.41x1023 kg

Surface: 144x106 km2

Escape: 5.02 km.s–1

Temperatures:

Min: –133°C (winter pole) Max: +27°C (summer noon) Average: –55°C (218K)

Albedo: 0.16 (darker) Speed of sound: 235 m.s–1

24 h <

23.44°

YEAR 365 Days 686 Days (667 Sols) 24 h 40 m

25.19

GRAVITY

38% of earth

SUNLIGHT 44% of earth

ATMOSPHERE /									
1013mb	Total	7.6 mb							
0.00035	CO2	0.95							
0.781	N ₂	0.027							
0.210	02	0.0013							
0 to 0.04	H ₂ O	0 to 0.0002							
0.0093	Ar	0.016							

Main geological features on Mars

Earth physiography

Large structural differences

Terrestrial Planets -Atmosphere

Age (Ga)

 $N_{2} = H_{2}^{0}, 0$

Mars

- Best known terrestrial planet
- 2/3^{rds} size of Earth
- Very large (>20 km) volcanoes
- Thin atmosphere (0.01 atm)
- Water-ice on surface
- Two very small moons
- Life???

Mars - Internal Structure

Background:

- Early global differentiation; heat-flux decline
- ~100 km thick crust uncorrelated with dichotomy
- North is not isostatically compensated
- Strong (1500 nT) paleomagnetic signatures (MD-Fe2O3)
- SNC's FeO content (~20%) > MORB (~10%)
- Lid convection at present (large volcanoes)

Questions:

- Detailed internal structure, liquid core ?
- Current seismic activity ? North > South ?
- Why did magnetic dynamo stop after 500 Ma ?
- Initial plate tectonics ? Geothermal gradient ?

Magnetic anomalies

- Very strong magnetic anomalies in oldest highlands
- I0 x anomalies of Earth
- Remanent magnetism in crust
- Mars has no active magnetic field

Gravity

Gravity variations measured with radio tracking of the spacecraft (line of sight)

SCIENCE

Gravity profile + topography
+ assumption for crustal
density => crustal thickness

Topography

Background:

- S crater highlands, N smooth plains
- +22 km (Olympus) to -7 km (Hellas)
- S pole 6 km higher than N pole
- N lithosphere supports loads (+/-)
- 2 oceanic basins (Utopia, N pole)
- Numerous buried impact basins
- Tharsis uplift center is offset
- Valles Marineris radial to Tharsis

Questions:

- Origin of crustal dichotomy ?
- Why N lowlands so flat (seabed) ?
- SÝN slope control aquifer flow ?

Mars topography

Mars Geology

Major Martian epochs

Noachian N(I)> 4800 > 3.7 Ga Hesperian 1600-4800 3.7- 3.3 Ga Amazonian < 1600 craters/10⁶ km² < 3.3 Ga

Volcanoes on Mars

(26 km above Martian "sea level")

- Long lived mantle plume
- Stable crust
- Picture: Olympus Mons
- Caldera 90 km across
- Lava flows of 200+ km

		Volcanics	Hydrological activity	Tectonics/ Deformation	Erosion	Cratering	Diame	eter (D) &	Crater	density
IVIars Time	4	-Pulsating volcanism	-Subsurface ice deposits		-Eolian activity -Gully formation -Landslides -Reworking of polar depo	sits		(D) > 1km	> 2km	
	MANO		-Ground ice		-Debris flows and aprons				1	> 5km
	NIAN	-Continued accumulation of lava flows in Norther plains	on n -Late period of channel formation		-Medusae Fossae Formation	n	400	100		
		-Northern smooth plains formation	-Outflow channels.	-Formation of Olympus Mons aureoles		-Continued cratering, but at a very low frequency			50	
	HES	-Northern plains volcanics -Shift from broad plains to central-vent	possibly standing waterbodies -Chaotic	-Waning Tharsis tectonis terrain	m -Erosion of northern plains -Resurfacing of northern plains (volcanics, eolian		1600	400		
	PERIA	Major volcanism -Valles Marineris	-lce sheet emplacement South pole	-Noctis Labyrithus- Valles Marineris rifting -Wrinkel ridge	deposits, alluvial sediments) -Polar deposits				100	>16km
	Z ZO	layered deposits -Formation of the highland volcanoes	-Formation of valley networks, run-off channels -Possible water release	tormation 1	-Intense erosion,	-Reducing impact flux/ end of bombardment	4800	1200	200	25
	ACHHA		due to volcanism	-Major faulting -Deformation due to Tharsis rise	elater acgradulon	-Major impact basins:			400	100
	N	-Widespread highland volcanism		deformation	-Erosion of basement rocks	Argyre Hellas, Isidis	rdmont			200
SCIEN				2	1	-start or neavy bomba	rament			

Core formation within the first 10-30Myr

Formation of basement material

Ground ice

Below the surface, ice is stable at lower latitudes Image shows epithermal neutron map of Mars Odyssey. Dark blue indicates up to 50% water ice in top 1 m of soil Sa

Paleoclimate

Laskar et al. (2004)

- Relatively young glacial activity (on equator) =>
- Climate on Mars has recently changed
- Related to change of obliquity

Valles Marineris

- 3000+ km long
- 600 km wide
- 8 km deep
- Formed by:
 - Faulting?
 - Fluvial erosion?
 - Landslides?
 - Or a combination of all three?
 - Not yet understood

Valles Marineris

Interior Layered Deposits

- Juventae Chasma (Valles Marineris)
- ILD ~3.3 Ga (Neukum, LPSC 2006)

Hebes Chasma
Interior layered deposits ILD

Candor Chasma

- Good layering
- Complex relation between topography and layering
- => Good for layer measurements

Candor Chasma

NV.S

Chaotic Terrains

Outflow Channels

- Most channels are found at 'exit' of Valles Marineris, in Chryse Planitia.
- Abrupt beginning, lack of tributaries
- Sculpted terrains
- Formed by catastrophic outpourings of water?

Valley networks

- Occur all over highland, very few in lowlands
- Evidence of warmer climate earlier on Mars?

Eolian Landforms

Eolian Landforms

Dust devils & tracks on Mars

Ionosphere

Background:

- No magnetosphere, like on Venus
- Presence of tilted (4°) bow shock
- Foreshock similar to other planets
- Ionosphere develops on day side
- 10 m global water lost to impacts
- Loss of 75% current 40Ar level
- Current outgassing < on Earth (x15)
- High density atm/topo uncorrelated

- Intrinsic magnetic field ?
- Convection in upper atmosphere ?

Mars Plasma Outflow (ASPERA, Phobos-2)

Surface- Atmosphere interactions

Background:

- Surface Pressure: 6.8 mbar ó 10.8 mbar
- Surface Temperature: -140°C ó +20°C
- PBL between 0 km (night) ó 3 km (daytime)
- Average wind (5-10 m/s); wind gusts (100 m/s)
- High winds to set dust airborne (>25 m/s)
- Erosion rate: m/Ma (early) mm/Ma (late)
- UV (B/C) higher than on Earth today

- Characterize PBL (thermal inversion) ?
- Regolith-atmosphere H2O exchange ?
- Mechanism to entrain dust and raise storms?

Atmosphere

Background:

•CO2 99, N2 2.7, Ar 1.6, O2 0.13 %
•Traces: CO, H2O, Ne, Kr, Xe, O3
•Thicker, warmer atm. 3.8 Ga ago
•No thermal reservoirs (oceans)
•Atm. waves (gravity, kelvin)
•Fog, frost, clouds, storms

- Atm. structure & dynamics ?
- Spatial & temporal variations ?
- Characterise H2O, CO2 cycles ?
- GCM validation (data points) ?

Dust, CO₂, Climate

Background:

- Obliquity variations P polar ice loading
- Polar layered terrains seasonal cycles
- Global storms, dust, water to high latitudes
- Large dust storms every 3 y, local every year
- Dust storms create polar warming
- Thermal forcing by airborne dust
- Yellow clouds charged with dust
- Paleowinds more active than GCMs

- Role of impacts in dust storm onset ?
- Dust storm electrostatic build-up ?

Dust, CO₂, Climate

Dust storm: up to 50 km high

Surface pressure: 1/150 of Earth

Atmosphere: carbon dixode

> Water ice clouds: 15 to 25 km high

Geology on Mars?

STRATICS STRATS STRATS SCOTLAND SOWALES, SCOTLAND, SCOTL

11

6 1 1 5 11

5

Geomorphological Mapping

Outcrops

Past wet Mars?

Where is the water?

Estimates (in the Planetary Science community) of how much water there has ever been on the planet Mars:

- 1970's: after Mariner-9
 - 1980's: after Viking
- 1990's: after Pathfinder
 - <u>2000's</u>: after MGS
 - Late 2000's after MEX???

SCIENCE

Overview

Soyuz rocket

- ► First launched in 1963
- ➤ Used more than 1600 times (98%)
- Manned and unmanned versions
- ➤ Built in Samara, Russia
- ➤ Assembled in Baikonur
 - 3+1 Stages
- ➤ S1: 4 boosters around central core
- ► S2: cylindrical core
- ► S3: payload adapter and fairing
- ➤ S4: Fregat (tested) for use with MEX
 - **Characteristics**
- ➤ Lift-off weight: 304 tons (prop. 279 t)
- ➤ Total height: 43.5 m
- ➤ Figures include MEX mass (~1200 kg)

Overview

- Soyuz launch number 1677
- ► Fregat stage use: 5th time
- Roll-out: 4 days before launch
- ➤ Tanks fill-up: 4 h before launch
 - Time
- ► Monday, 02 June 2003
- > 23:45:26 local (Kazakhstan)
- ➤ Moscow time (-2h); CEST (-4h)
- ► Fair weather, some wind
 - Characteristics
- MEX mass load: 1223 kg
- ➤ Window up to 14/06 for mass load
- ➤ Two launch slots (02-03/06)
- All systems nominal (green)

Launch

HRSC Results

HRSC

- Much more recent geological ages than previously estimated (one order of magnitude) for volcanic processes and glacial processes, which means that the planet is basically "active" today.
- Confirmation of glacial processes in current equatorial regions. Glacial, not fluvial activity, in combination with volcanic activity, seems to have dominated the evolution of the surface of Mars.
- No evidence of a large ocean in the Northern lowlands from HRSC data, as hypothesized in previous investigations.
- Climate change (cold/wet colder/dry) occurred early in Martian history.

Valles Marineris

20 kr

Polar deposits

10 11

11.1.

Chaotic terrains

Thaumasia

100

Minerals revealed on the surface (OMEGA)

Magnesium sulfate - rich stratified deposits identified by OMEGA

OMEGA results

OMEGA

- Various types of ice (H₂O and CO₂), either mixed or distinct, mapped in polar regions.
- Lack of aqueous alteration of mafic minerals (olivine) in Northern plains suggests that large bodies of water, such as lakes or seas, have not existed for long periods on the Martian surface.
- Hydrated minerals (clays in Noachian, sulfates later) indicate alteration in varying amounts of water and climate regimes.
- Most of the Northern plains (volcanic origin) do not exhibit mafic minerals.
- At present, CO₂ is dominantly stored in the atmosphere, as no carbonates have been found.

Minerals Revealed by OMEGA

180.20

50 km

Magnesium sulfate - rich stratified deposits identified by OMEGA

MARSIS

- MARSIS antenna beam
- Mapping the subsurface structure with micro waves.
- Current/past inventory of water.
- Study water transport, storage
- Evolution: geology, climate, life ?
- Surface roughness, topography.
- Ionospheric sounding: e^- density to H_2O and CO_2 cycles

MARSIS Results

100 km

Holden Crater Paleolacustrine system

Fluvial features

Alluvial fans on Earth and Mars

Alluvial fans on Earth and Mars

Holden crater: deposits

A

Earth desert environments as possible analogues.

Mars in 3D

Valles Marineris

Ophir Chasma

Ophir Chasma - zoom

Dao Vallis

N Y

1.00

Hebes Chasma

Aram Chaos

Olympus Mons

Phobos

Nicholson Crater

Biblis Patera

Nanedi Valles

Tempe Terra

Pavonis Mons

The future: ESA Aurora programme

Divelit

ExoMars Rover

ExoMars

Where to drive...

Mars Sample Return

Mars Sample Return

Human exploration

Human exploration

