HRSC RGB & Pan-sharpening

Angelo Pio Rossi

HRSC RGB

• HRSC has 4 color bands:

- Blue
- Green
- Red
- Near Infrared

HRSC - band names

- $H0000_0000_ND^2$.IMG ND = nadir $H0000_0000_BL^2$.IMG BL = blue
- H0000_0000_GR2.IMG GR
- H0000_0000_RE2.IMG
- H0000_0000_IR2.IMG

- CD areas
- GR = green
- RE = red
 - IR = near IR

processing level (Level2)

HRSC RGB

examples of HRSC RGB

hrortho

Syntax:

\$HWLIB/hrortho inp=... ori=spice dtm=... out=... [optionals]

dtm=... dtm-file or height above datum in meter

- inp=... Input image used if
- out=... Output image generated
- ori=spice (spice KERNELS used)
- fitto=... File to which OUT should fit.
- sL_inp=... starting lines of input Level2 image
- nl_inp=... no. lines starting from nl_inp to be processed

"hrortho" produced map projected HRSC images

hrortho for RGB

hrortho inp=H0572_0000_ND2.IMG out=nadir dtm=0 ori=spice hrortho inp=H0572_0000_BL2.IMG out=blue dtm=0 fitto=nadir hrortho inp=H0572_0000_GR2.IMG out=green dtm=0 fitto=nadir hrortho inp=H0572_0000_RE2.IMG out=red dtm=0 fitto=nadir hrortho inp=H0572_0000_IR2.IMG out=ir dtm=0 fitto=nadir

red	green	blue

Candor Chasma H0360_0000

╋

HRSC RGB -How?

\$HWLIB/hrortho inp=H0360_0000_ND2.IMG out=nadir dtm=\$MOLA64 sl_inp=5000 nl_inp=30000
ori=spice a_axis=3396.19 b_axis=3396.19 c_axis=3396.19

\$HWLIB/hrortho inp=H0360_0000_RE2.IMG out=red dtm=\$MOLA64 fitto=nadir ori=spice a_axis=3396.19 b_axis=3396.19 c_axis=3396.19

\$HWLIB/hrortho inp=H0360_0000_GR2.IMG out=green dtm=\$MOLA64 fitto=nadir ori=spice a_axis=3396.19 b_axis=3396.19 c_axis=3396.19

\$HWLIB/hrortho inp=H0360_0000_BL2.IMG out=blue dtm=\$MOLA64 fitto=nadir ori=spice a_axis=3396.19 b_axis=3396.19 c_axis=3396.19

\$HWLIB/hrortho inp=H0360_0000_IR2.IMG out=ir dtm=\$MOLA64 fitto=nadir ori=spice a_axis=3396.19 b_axis=3396.19 c_axis=3396.19

Pan-sharpening

• What is it?

Fusion of a color data set with a panchromatic (greyscale) one with higher spatial resolution

Example: Landsat 7 ETM+

Example: Landsat 7 ETM+

Example: Landsat 7 ETM+

PAN sharpening algorithms

• Multiple algorithms for pan-sharpening

- Multiple tools / software packages available for pan-sharpening:
 - E.g. Envi

PAN sharpening

WHAT TO DO:

- Nadir at full resolution
- Red, green, blue oversampled, fitting to Nadir
- RGB to Lab Color
- Nadir pasted into Intensity Channel

L: Lightness of the color (L=0 black, L*=100 white)

a: Position between magenta and green (a<0 green, a>0 magenta)

b: Position between yellow and blue (b<0 blue, b>0 yellow)

Poor man's sharpening

PAN sharpening

3 2 1 image

Panchromatic

image

Lightness channel from 3 2 1 image

Pan-sharpened

321 image

PAN sharpening - How?

- Requirement: Nadir & RGB coregistered, same number of lines & samples
- Build and RGB with Red, Green, Blue bands
- Transform RGB in Lab Color (lightness, a, b)
- Open Nadir
- Paste Nadir into "lightness"
- Transform back Lab Color in RGB

0) 😑 🔀 The GIN	ИP
<u>F</u> ile	<u>X</u> tns <u>H</u> elp	
0	<u>l</u> ew	Ctrl+N
<u>•</u>	<u>)</u> pen	Ctrl+O
۵ 🎱	Open <u>L</u> ocation	
0	Open <u>R</u> ecent	•
A	<u>\</u> cquire	•
ЖE	references	
[<u>)</u> ialogs	•
0	Quit	Ctrl+Q
		/

Open RGB image

0	0			X	RGB co	py.psd	-1.0 (8	RGB, 2	laye	ers) 300x835			
<u>F</u> ile	<u>E</u> dit	<u>S</u> elect	<u>V</u> iew	<u>I</u> mage	<u>L</u> ayer	<u>T</u> ools	<u>D</u> ialo	gs Fi	lte <u>r</u> s	Script-Fu			
D	100		125	🗘 <u>D</u> upl	licate		C	trl+D		2,25	. 250	1, 275,	<u>ць</u>
4				<u>M</u> od	e					<u>R</u> GB			
7				<u>T</u> ran	sform			•		<u>G</u> rayscale			
5				₽ <u>+</u> Cany	<u>/</u> as Size					Indexed	20.00		
-				F <u>i</u> t C	anvas t	o Layer	s			C <u>o</u> mpose	and the		
크				Print	Size					<u>D</u> ecompose	-		
ģΞ.				Scale	e Image	·							
Έ			188.	⊿ <u>C</u> rop) Image								
-			20	<u>A</u> uto Zaal	crop In	nage			18				
1-			88	Zea	ous cro	pp			24				
5			201	Merg	ge Visib	le <u>L</u> aye	rs C	trl+M	10				
Ξ			32	Flatt	en Ima <u>c</u>	je			13				
1				<u>G</u> uid	es			•					
5				⊞ Conf	igure C	ä <u>r</u> id							
-												100.000	
-												1.000	
21												1. 30	
2													
Ξ		-			-			N.L.				1.5	
04	0		_	_									>► 4
	(px 🔻	3009	6 🔻 Lay	/er 1 (3	.03 MB)							Canco

Transform RGB in Lab Color

000	X Decompose
Extract Chan	nels
🔘 RGB	
🔘 RGBA	
🔘 HSV	
CMY	
🔘 СМҮК	
🔘 Alpha	
💽 LAB	
🔘 YCbCr	_ITU_R470
🔘 YCbCr	_ITU_R709
🔘 YCbCr	_ITU_R470_256
🔘 YCbCr	_ITU_R709_256
Decompo	ose to <u>l</u> ayers
? <u>H</u> elp	Cancel OK

Lab Color

Recompose RGB

Recompose RGB

Recompose RGB

PAN sharpening

╈

Mawrth vallis

Example - N Pole

Input: Red, Green, Blue Level2 images

Output: map-projected RGB map-projected IrGB map-projected pan-sharp RGB map-projected pan-sharp ItGB

HRSC Level2 data

Level2 map projection

WHAT WE NEED:

MINIVICAR VARIABLES

setenv V2TOP /..../minivicar/vicar
source \$V2TOP/vicset1.csh
source \$V2TOP/vicset2.csh
setenv M94GEOCAL \$V2TOP/../GEOCAL
set path = (\$path \$V2TOP)

SPICE KERNELS VARIABLES

setenv MOLA64 \$V2TOP/../data/megt88.360hb.vic setenv LEAPSECONDS \$V2TOP/../kernels/NAIF0008.TLS setenv CONSTANTS \$V2TOP/../kernels/PCK00008.TPC setenv SUNKER \$V2TOP/../kernels/DE405S.BSP setenv HWSPICE_TF \$V2TOP/../kernels/MEX_V08.TF setenv HWSPICE_TI \$V2TOP/../kernels/MEX_HRSC_V03.TI setenv HWSPICE_TSC \$V2TOP/../kernels/MEX_070321_STEP.TSC setenv HWSPICE_BC ./ATNM_P030602191822_00135.BC setenv HWSPICE_BSP ./ORMM__041201000000_00105.BSP

hrortho

WHAT WE DO:

HRORTHO

\$HWLIB/hrortho inp=H1177_0000_ND2.IMG out=nadir dtm=0 ori=spice sl_inp=3500 nl_inp=4500
a_axis=3376.2 b_axis=3376.2 c_axis=3376.2 mp_type=STEREOGRAPHIC cen_lat=90 cen_long=0 outmax=2048

\$HWLIB/hrortho inp=H1177_0000_RE2.IMG out=red dtm=0 fitto=nadir ori=spice a_axis=3376.2 b_axis=3376.2 c_axis=3376.2 mp_type=STEREOGRAPHIC cen_lat=90 cen_long=0 outmax=2048

\$HWLIB/hrortho inp=H1177_0000_GR2.IMG out=green dtm=0 fitto=nadir ori=spice a_axis=3376.2 b_axis=3376.2 c_axis=3376.2 mp_type=STEREOGRAPHIC cen_lat=90 cen_long=0 outmax=2048

\$HWLIB/hrortho inp=H1177_0000_BL2.IMG out=blue dtm=0 fitto=nadir ori=spice a_axis=3376.2 b_axis=3376.2 c_axis=3376.2 mp_type=STEREOGRAPHIC cen_lat=90 cen_long=0 outmax=2048

\$HWLIB/hrortho inp=H1177_0000_IR2.IMG out=ir dtm=0 fitto=nadir ori=spice a_axis=3376.2 b_axis=3376.2 c_axis=3376.2 mp_type=STEREOGRAPHIC cen_lat=90 cen_long=0 outmax=2048

dlrto8 & dlrvic2png

WHAT WE DO (shown just for one band):

- Convert vicar file from 16 to 8 bit (dlrto8)
- Export 8 bit vicar file to

HRORTHO

\$HWLIB/dlrto8 inp=nadir out=nadir_8bit.vic dnmin=0

\$HWLIB/dlrvic2png inp=nadir_8bit.vic out=NADIR.PNG

Combine rgb single files in RGB file (with imagemagick):

convert -combine RED.PNG GREEN.PNG BLUE.PNG RGB.tif

Full procedure (i)

#!/bin/tcsh

MINIVICAR VARIABLES
setenv V2TOP /<PATH>/minivicar/vicar
source \$V2TOP/vicset1.csh
source \$V2TOP/vicset2.csh
setenv M94GEOCAL \$V2TOP/../GEOCAL
set PATH = (\$PATH \$V2TOP)

VARIABLES FOR KERNELS AND DATA
setenv LEAPSECONDS \$V2TOP/../kernels/NAIF0008.TLS
setenv CONSTANTS \$V2TOP/../kernels/PCK00008.TPC
setenv SUNKER \$V2TOP/../kernels/DE405S.BSP
setenv HWSPICE_TF \$V2TOP/../kernels/MEX_V08.TF
setenv HWSPICE_TI \$V2TOP/../kernels/MEX_HRSC_V03.TI
setenv HWSPICE_TSC \$V2TOP/../kernels/MEX_070321_STEP.TSC
setenv HWSPICE_BC ./ATNM_P030602191822_00135.BC
setenv HWSPICE_BSP ./ORMM__041201000000_00105.BSP

HRORTHO

\$HWLIB/hrortho inp=H1177_0000_ND2.IMG out=nadir dtm=0 ori=spice a_axis=3376.2 b_axis=3376.2 c_axis=3376.2
mp_type=STEREOGRAPHIC cen_lat=90 cen_long=0 outmax=2048 mp_sca=0.2

\$HWLIB/hrortho inp=H1177_0000_RE2.IMG out=red dtm=0 fitto=nadir ori=spice a_axis=3376.2 b_axis=3376.2 c_axis=3376.2
mp_type=STEREOGRAPHIC cen_lat=90 cen_long=0 outmax=2048

Example

\$HWLIB/hrortho inp=H1177_0000_GR2.IMG out=green dtm=0 fitto=nadir ori=spice a_axis=3376.2 b_axis=3376.2
c_axis=3376.2 mp_type=STEREOGRAPHIC cen_lat=90 cen_long=0 outmax=2048

\$HWLIB/hrortho inp=H1177_0000_BL2.IMG out=blue dtm=0 fitto=nadir ori=spice a_axis=3376.2 b_axis=3376.2
c_axis=3376.2 mp_type=STEREOGRAPHIC cen_lat=90 cen_long=0 outmax=2048

\$HWLIB/hrortho inp=H1177_0000_IR2.IMG out=ir dtm=0 fitto=nadir ori=spice a_axis=3376.2 b_axis=3376.2 c_axis=3376.2
mp_type=STEREOGRAPHIC cen_lat=90 cen_long=0 outmax=2048

Full procedure (ii) Example

8 BIT CONVERSION

\$HWLIB/dlrto8 inp=nadir out=nadir_8bit.vic dnmin=0
\$HWLIB/dlrto8 inp=blue out=blue_8bit.vic dnmin=0
\$HWLIB/dlrto8 inp=green out=green_8bit.vic dnmin=0
\$HWLIB/dlrto8 inp=red out=red_8bit.vic dnmin=0
\$HWLIB/dlrto8 inp=ir out=ir_8bit.vic dnmin=0

EXPORT TO PNG

\$HWLIB/dlrvic2png inp=red_8bit.vic out=RED.PNG
\$HWLIB/dlrvic2png inp=green_8bit.vic out=GREEN.PNG
\$HWLIB/dlrvic2png inp=blue_8bit.vic out=BLUE.PNG
\$HWLIB/dlrvic2png inp=nadir_8bit.vic out=NADIR.PNG
\$HWLIB/dlrvic2png inp=ir_8bit.vic out=IR.PNG

RGB - example

WHAT WE GET:

Map-projected HRSC RGB

mp_type=STEREOGRAPHIC
cen_lat=90 cen_long=0
a_axis=3376.2
b_axis=3376.2
c_axis=3376.2

PROPERTY = 'MAP' Vicar header

TARGET_NAME='MARS' MAP_PROJECTION_TYPE='STEREOGRAPHIC' COORDINATE_SYSTEM_NAME='PLANETOGRAPHIC' POSITIVE_LONGITUDE_DIRECTION='EAST' A_AXIS_RADIUS=3376.2 B_AXIS_RADIUS=3376.2 C_AXIS_RADIUS=3376.2 BODY_LONG_AXIS=0.0 MAP_SCALE=0.2 CENTER_LATITUDE=90.0 CENTER_LONGITUDE=0.0 SPHERICAL_AZIMUTH=0.0 LINE_PROJECTION_OFFSET=3691.0 SAMPLE_PROJECTION_OFFSET=2664.0 MAP_PROJECTION_DESC=('A conformal, azimuthal projection where the central meridian and a particular', 'parallel (if shown) are straight lines. This is a perspective projection for', 'the sphere. All meridians on the polar aspect and the equator on the', 'equatorial aspect are straight lines. All other meridians and parallels are', 'shown as arcs of circles. Directions from the center of the projection are', 'true (except on ellipsoidal oblique and equatorial aspects). Scale', 'increases away from the center of the projection. Equations (21-2), (21-3),', '(21-4), (20-14) through (20-18), (21-15) of USGS Paper 1395 (pp 157-159) were used.', 'The value of the COORDINATE_SYSTEM_NAME item determines whether latitudes are', 'planetographic or planetocentric; if this keyword is absent, then', 'the default is planetographic.', 'The direction of increasing longitude is defined by the POSITIVE_LONGITUDE_DIRECTION', 'item; if this keyword is absent, then the direction is determined by', 'COORDINATE_SYSTEM_NAME: it is East if the system is planetographic, West if it is', 'planetocentric.',

'NOTE: Portions of above text taken from U.S. Geological Survey Professional Paper 1395,', 'second printing 1989, ''Map Projections - A Working Manual'' by John Snyder.',

RGB vs. Pan-sharp

RGB

Detail

RGB

Subset: sl_inp=3500 nl_inp=4500

Nadir

Pan-sharp

IrGB

IrGB

Pan-sharp IrGB

Pan-sharp IrGB

Pan-sharp IrGB

(enhanced brightness, contrast)

Example - S Pole

Subset:
sl_inp=10000
nl_inp=6000

H2165_0000

Red: IR Green: GR Blue: BL + Pan-sharp

Example - S Pole

Limits

Limits

bands can be more or less affected, depending on viewing geometry

vs. full stereo processing

result with full photogrammetric processing

HRSC stereo

Orbit 2039

000	X xvd: red_8bit.vic, green_8bit.vic, blue_8bit.vic			
File Edit Tools				Help
labelCursorY 27228				
labelCursorX 1942				
labelRedDn 146				
labelGreenDn 167		Red:	RE	
labelBlueDn (183		Green:	GR	
labelImageSize 홋628x68740		Blue:	BL	
1/2 =				

Orbit 2039

000	🔀 xvd: nadir_8bit.vic, green_8bit.vic, blue_8bit.vic			
File Edit Tools				Help
labelCursorY 27314 labelCursorX 2192				
labelRedDn 1117 labelGreenDn 1149		Red:	ND	
labelBlueDn 166		Green:	GR	
IabelImageSize 5628x68740 1/2 =		Blue:	BL	

Caveat

- RGB with MOLA used as DTM for orthorectification gives variable results
- Pan-sharpening might improve the general aspect of RGB
- Color misalignement will be solved when higher level HRSC data products are available

