Hayabusa's Adventure around a Tiny Asteroid Itokawa

COSPAR

Capacity Building Workshop on Planetary Science July 23 - Aug. 3, 2007 Montevideo, Uruguay

> M. Yoshikawa, A. Fujiwara, J. Kawaguchi (JAXA) Hayabusa Mission & Science Team

Asteroid Sample Return Mission "HAYABUSA"

before

Asteroid Sample Return Mission "HAYABUSA"

after

Antenhes / MEF / JAXA . ISAS

It's a Small World !Asteroid ItokawavsISS

It's a Small World ! (Part-2)

It's a World of "Little Prince"

(25143) Itokawa

Contents

• Brief summary of Hayabusa mission

• Mission : as time sequence

- Cruising Phase
- Near & Around Itokawa
- Descent & Touchdown
- Mass Determination
- From now on
- Scentific Results

Post Hayabusa Mission

Brief Summary of Hayabusa Mission

MUSES-C

- MUSES = Mu Space Engineering Spacecraft
 - = Technological demonstrator by MU rocket
- C = third spacecraft (A: HITEN, B: HALCA)
- After the successful launch, it was named "Hayabusa," which mean falcon in Japanese. "halcón"

New Technology in Hayabusa

Five Key Technology to be demonstrated :

- **1.Interplanetary Cruise via Ion Engines as Primary Propulsion Microwave driven & CC Grid Ion Engine**
- 2.Autonomous Navigation and Guidance using Optical Measurement
 3.Sample Collection from Asteroid Surface under Micro Gravity
 4.Direct Reentry for Sample Recovery from Interplanetary Orbit
 5.Combination of Low Thrust and Gravity Assist

Other New Technology introduced :

Bi-Propellant Small Thrust Reaction Control System (20N),X-band Up/Down Communication, Complete CCSDS Packet Telemetry,Duty Guaranteed Heater Control Electronics,Wheel Unloading via Ion Engines, PN-Code Ranging,Lithium Ion Re-chargeable Battery, Multi-Junction Solar Cell, etc.

Scientific Objectives

- To know the nature of sub-km sized S-type asteroid
- To investigate the relationship between asteroids and meteors
- To have key information for the origin and evolution of asteroids

Remote Sensing Instruments onboard Hayabusa

• Multi-Spectral Telescopic Imager (AMICA)

- > CCD viewing angle 5.7° with 8 band-pass filters
- > About 1500 still images obtained

• Laser Altimeter (LIDAR)

> Measurement accuracy of 1 m at 50m altitude

> 1,670,000 hits obtained

• Near-Infrared Spectrometer (NIRS)

> 64-channel InGaAs detector at wavelengths of 0.8~2.1 micron

- > Viewing angle 0.1 $^{\circ}$ (6-90 m per pixel spatial resolution)
- > More than 80,000 spectra obtained

• X-ray Fluorescence Spectrometer (XRS)

- > CCD viewing angle: 3.5°, 160 eV resolution at 5.9 keV
- > 6,000 spectra from the asteroid surface obtained

Mission Scenario

Hayabusa Mission by CG

Asteroid (25143) Itokawa

Asteroid Itokawa was named after the late Prof. Hideo. Itokawa, the Father of Modern Japanese Rocketry

Mission - Cruising Phase -

Orbit History until Asteroid Arrival

Ion Engine Operation 1

The Orbit determination under the thrust of the ion engine is difficult, so we made "ballistic period" (=ion engine is stopped) of about three days once in a month, and performed the orbit determination.

Earth Swingby

30 July 2007 COSPAR Capacity Building Workshop on Planetary Science, Monte

Images Obtained at Earth Swingby

Solar Conjunction

Optical Navigation

Images of Itokawa

Ion Engine Operation 2

Aug 28, 2005: The IES finished its role on the way to the asteroid.

Operation : 25,800hour&unit Single Unit :10,400hour Delta-V :1,400m/s Prop. Consumption: 22kg

Mission - Near & Around Itokawa -

Orbit at Proximity Phase

Final Approach = Optical Navigation

Images of Itokawa at Approach Phase

2005

9/4 02:36 UTC, 1000km

9/5 15:30 UTC, 700km

9/6 03:32 UTC, 450km

9/7 16:00 UTC, 220km

30 July 2007 COSPAR Capacity Building Workshop on Planetary Science, Montevideo, Uruguay

Arrival at Itokawa

Sept. 12, 2005, at the distance of 20km

Gate Position to Home Position

Gate Position to Home Position

Images of Itokawa : whole

Global Shape of Itokawa: Sea Otter in Space?

Ecliptic plane of our solar system and this asteroid are considered to resemble a sea-otter on sea. This asteroid is divided into the head and body parts with constricted neck circular region. Ventral saddle-like parts and dorsal one are covered with smooth surface. Right is an ascii art which had been distributed in operators during the Rendezvous.

Images of Itokawa Smooth and Rough

Images of Itokawa Smooth and Rough

COSPAR Capacity Building Workshop on Planetary Science, Montevideo, Uruguay

Images of Itokawa Rough surface

Release 051110-6.2 ISAS/JAXA

Images of Itokawa Large Boulders

"Pencil"

"Yoshinodai"

Images of Itokawa Craters

Images of Itokawa Other features

Images of Itokawa Close-up

Images of Itokawa Close-up

At 59m 6mm/pixel

Images of Itokawa color variation

Images of Itokawa color variation

30 July 2007 COSPAR Capacity Building Workshop on Planetary Science, Montevideo, Uruguay

Images of Itokawa Bright Region

Explanation of Color Variation

Near Infrared Observation

* Surface of Itokawa indicates olivine and pyroxene mineral assemblage.* Reflectance spectrum of Itokawa is similar to that of ordinary chondrites.

X-ray Observation

*X-rays from Itokawa (right) has larger Mg/Si and smaller Al/Si than those of X-rays from the standard sample (left). *Itokawa is similar to ordinary chondrites in composition.

Potential and Slope Maps

Potential

Slope

(Fujiwara, et al., Science (2006))

Mission - Descent & Touchdown -

Descent Rehearsal and Touch-down

Touch-down sequence

Approach and Descent Path #2

Rehearsal No.1 (Nov. 4, 2005)

Navigation & Guidance Practice (Nov. 9, 2005)

Rehearsal No.2 (Nov. 12, 2005)

Touch-down for Sampling

Touch-down for Sampling#1

Touch-down for Sampling#2

Target Marker

MINERVA

What happened at 1st touch-down?

23

What happened at 1st touch-down ? -> answer

After 2nd Touching Down

•Hayabusa had lost contact due to fuel gas eruption for 45 days since December 8th.

•A beacon, un-modulated signal from the spacecraft was acquired on January 23rd, 2006.

•Since then, Haybusa is operated without losing its contact.

Mass Determination

Mass Estimation

Results of Mass Estimation

1st result

Groups	Period Data type	Distance from Itokawa	Model of Itokawa	GM 10 ⁻⁹ km ³ /s ²	Error
A	9/12~10/2 R&RR	20 - 7 km	point mass	2.34	15%
В	10/21-22 R&RR, Opt., LIDAR	3 km	point mass	2.29	5%
С	11/12 LIDAR, Opt.	1427 - 825 m	polyhedron	2.39	5%
D	11/12 Opt., LIDAR	800 - 100 m	polyhedron	2.36	6%
E	11/19 LRF	20 - 10 m	-	_	-

Mass and Bulk Density of Itokawa

Estimated GM in each period (GM=Gravity Constant x Mass)

Macroporosity of Itokawa

Mission - From now on -

Current Status

Current (July 2007) status is as follows:

- The chemical thrusters cannot be used.
- Two out of three reaction wheels are broken.
- The ion engines are OK.

• Attitude control : by one reaction wheel, the ion engines, and the solar radiation pressure

Return to the Earth

- New trajectory (red line) leaving Itokawa vicinity in April 2007, returning to Earth in June of 2010 is shown here.
- The Xenon gas consumption meets the current amount that remains.

We hope ...

Scientific Results - short summary -

Fundamental Parameters of (25143) Itokawa

Ground-based observation

Rotational Period: P = 12.1324 hours **Spin Axis :** almost perpendicular to the ecliptic plane, retrograde **Size, shape :** by Kaasalainen, by Ostro

Observation by Hayabusa

Size: Principal Axis: X=535 m, Y=294 m, Z=209 m (±1 m) Spin Axis: Orientation in space $[\beta,\lambda]=[128.5, -89.66]$ Nutation is within error range. Mass: $(3.510 \pm 0.105) \times 10^{10} \text{ kg}$ Volume: $(1.84 \pm 0.092) \times 10^7 \text{ m}^3$ Bulk Density: $1.90 \pm 0.13 \text{ g/cm}^3$

Formation Scenario of Itokawa

"Rubble Pile" Hypothesis

- Extremely low bulk density for an S-type asteroid and high macroporosity of ~40 %
- Global shape is round rather than blocky
- Surface is covered with many boulders
- No large structures extending to the entire body (e.g., long linear ridge found on Eros and Phobos) found
- Parts of some facets are exposed on the surface (?)
- Slope is generally low (relaxed in many areas)
- Large boulders cannot be formed during impacts to result the craters existing now on Itokawa. They must be associated with much larger impact events.

What Hayabusa found on Itokawa

- Itokawa is the first very small asteroid with clear indications of "rubble-pile" structure.
- Itokawa maybe formed by gravitational coagulation of ejected fragments from a catastrophic disruption of its large parent body by an impact.
- Itokawa is the smallest body of the solar system that spacecraft ever explored, but it has a lot of features on the surface.
- Itokawa, which is S-type asteroid, is mother body of ordinary chondrite meteorites.
- •We saw the actual view of a potentially hazardous asteroid for the first time.

Post Hayabusa Mission

Hayabusa-next

Future Plans

Small World

Gracias!

Information

Orbit of Hayabusa

(Hayabusa:Red, Itokawa:Blue, Earth:Green)

Orbital Evolution of Itokawa

Chaotic Motion of Itokawa

