Introduction to Ring Dynamics Lecture \#2

Mark R. Showalter SETI Institute

COSPAR WORKSHOP
Wednesday, July 23, 2007

Circular, Equatorial Motion

Top View,
Inertial Frame

Circular, Equatorial Motion

- Semimajor axis = a
- Mean motion = n
- Orbital period $=P$
- $P=2 \pi / n$

Top View,
Inertial Frame

Circular, Equatorial Motion

- Semimajor axis = a
- Mean motion = n
- Orbital period $=P$

$$
\text { - } P=2 \pi / n
$$

- Mean longitude at epoch $=\lambda$
Top View, Inertial Frame

Inclined Motion

Side View,
Inertial Frame

Inclined Motion

- Inclination = i
- Vertical frequency

$$
=V
$$

Side View, Inertial Frame

Inclined Motion

- Inclination = i
- Vertical frequency = V
- Longitude of ascending node $=\Omega$
(crossing from below to above the equator)

Side View,
Inertial Frame

Inclined Motion

Top View,
Inertial Frame

- Inclination $=\mathrm{i}$
- Vertical frequency
= V
- Longitude of ascending node $=\Omega$
(crossing from below to above the equator)

Eccentric Motion

Top View,
Inertial Frame

Eccentric Motion

- Eccentricity $=e$
- Pericenter at a(1-e)
- Apocenter at a(1+e)
- Radial ("epicyclic") frequency $=\mathrm{K}$

Top View,
Inertial Frame

Eccentric Motion

Top View, Inertial Frame

- Longitude of pericenter

$$
=\omega
$$

Epicyclic Motion:

 Eccentric Motion viewed in a Rotating FrameTop View, Rotating Frame

Epicyclic Motion:

 Eccentric Motion viewed in a Rotating FrameTop View, Rotating Frame

Epicyclic Motion:

 Eccentric Motion viewed in a Rotating FrameTop View, Rotating Frame

Three Frequencies

- Mean motion n

$$
\text { (6) } n^{2}=G M p / a^{3}
$$

- Epicyclic frequency K
($\mathrm{K}^{2}=\mathrm{GMp} / \mathrm{a}^{3}$
- Vertical frequency V
(2) $\mathrm{v}^{2}=G M p / a^{3}$

Three Frequencies

- Mean motion n

- $n^{2}=G M p / a^{3}$
- Epicyclic frequency k
- $K^{2}=G M p / a^{3}$
- Vertical frequency v
- $v^{2}=G M p / a^{3}$

Three Frequencies

- Mean motion n

$$
\text { (} n^{2}=G M_{p} / a^{3}\left[1+\frac{3}{2} J_{2}\left(\frac{R_{p}}{a}\right)^{2}-\frac{15}{8} J_{4}\left(\frac{R_{p}}{a}\right)^{4} \ldots\right]
$$

- Epicyclic frequency k

$$
\text { - } K^{2}=G M_{p} / a^{3}\left[1-\frac{3}{2} J_{2}\left(\frac{R_{p}}{a}\right)^{2}+\frac{45}{8} J_{4}\left(\frac{R_{p}}{a}\right)^{4} \ldots\right]
$$

- Vertical frequency v

$$
\text { - } v^{2}=G M_{p} / a^{3}\left[1+\frac{9}{2} J_{2}\left(\frac{R_{p}}{a}\right)^{2}-\frac{75}{8} J_{4}\left(\frac{R_{p}}{a}\right)^{4} \ldots\right]
$$

Three Different Frequencies

$$
\begin{aligned}
& n^{2}=G M_{p} / a^{3}\left[1+\frac{3}{2} J_{2}\left(\frac{R_{p}}{a}\right)^{2}-\frac{15}{8} J_{4}\left(\frac{R_{p}}{a}\right)^{4} \ldots\right] \\
& K^{2}=G M_{p} / a^{3}\left[1-\frac{3}{2} J_{2}\left(\frac{R_{p}}{a}\right)^{2}+\frac{45}{8} J_{4}\left(\frac{R_{p}}{a}\right)^{4} \ldots\right] \\
& V^{2}=G M_{p} / a^{3}\left[1+\frac{9}{2} J_{2}\left(\frac{R_{p}}{a}\right)^{2}-\frac{75}{8} J_{4}\left(\frac{R_{p}}{a}\right)^{4} \ldots\right]
\end{aligned}
$$

- J2, J4, ... are the "gravitational moments".
- J2 can be ${ }^{\sim} 1 \%$.
- Terms matter less as semimajor axis increases.
- $K<n<v$.

k < n : Pericenter Precession

- Epicyclic period $T=2 \pi / k$.
- Moon advances $n T$ (> 2π).
- Pericenter ω advances

$$
n T-2 \pi
$$

- Precession rate:
- $\dot{\omega}=n-2 \pi / T=n-k$.

k < n : Pericenter Precession

- Epicyclic period $T=2 \pi / k$.
- Moon advances $n T$ (> 2π).
- Pericenter ω advances

$$
n T-2 \pi
$$

- Precession rate:
- $\dot{\omega}=n-2 \pi / T=n-k$.

k < n : Pericenter Precession

- Epicyclic period $T=2 \pi / k$.
- Moon advances $n T$ (> 2π).
- Pericenter ω advances

$$
n T-2 \pi
$$

- Precession rate:
- $\dot{\omega}=n-2 \pi / T=n-K$.
- Similarly, $n<v$ leads to nodal regression at a rate:

$$
\dot{\Omega}=n-v
$$

Kepler Shear

- All frequencies are functions of semimajor axis a.
- "Nearby" features do not stay nearby for long.
- Lifetime of a clump of length $\Delta \theta$ and width Δa :

$$
\Delta \theta / \Delta n=2 / 3 P[\Delta \theta / 2 \pi][a / \Delta a]
$$

\Rightarrow A Saturn feature $1 \mathrm{~km} \times 1^{\circ}$ in size at 100,000 km is only ${ }^{\sim} 1$ year old.
\Rightarrow Clumps in planetary rings must be either young or confined.

Transient Structures in Saturn's F Ring

2006-329

Transient Structures in Saturn's F Ring
2006-357

Transient Structures in Saturn's F Ring

2007-005

Transient Structures in Saturn's F Ring

2007-04|

Transient Structures in Saturn's F Ring
2007-058

Transient Structures in Saturn's F Ring
2007-076

Transient Structures in Saturn's F Ring

2007-090

Transient Structures in Saturn's F Ring
2007-I08

Transient Structures in Saturn's F Ring

2007-|25

$\longleftarrow G$ Ring

A Confined Arc in Saturn's G Ring

Other Types of Shear

- n, k and v are all similar in magnitude.
- Typical periods ${ }^{\sim} 10$ hours in rings.
- Precession rate $\dot{\omega}$ and regression rate $\dot{\Omega}$ are much slower.
- Typical periods are ~ 100 days.
- Shearing rates for pericenters and nodes are correspondingly much slower.

Vertical "Ripples"

Vertical "Ripples"

- Closeup Cassini images show a regular, ~ 30 km wavelength
- Closeup Cassini images show a regular, ~ 30 km wavelength
- In 1995, Hubble occultation data showed the same feature but with $a \sim 60 \mathrm{~km}$ wavelength.
- Closeup Cassini images show a regular, ~ 30 km wavelength
- In 1995, Hubble occultation data showed the same feature but with $a \sim 60 \mathrm{~km}$ wavelength.
- In Cassini images, it continues to wind tighter at a rate exactly consistent with $d \Omega / d r$.
- Closeup Cassini images show a regular, ~ 30 km wavelength
- In 1995, Hubble occultation data showed the same feature but with a ~ 60 km wavelength.
- In Cassini images, it continues to wind tighter at a rate exactly consistent with $d \Omega / d r$.
- Playing the process backwards, something warped the ring in early 1984.

Ring-Moon Interactions
 - Moon

Ring

Top View,
Frame Rotating with Moon (n_{M})

Ring-Moon Interactions
 - Moon

Ring

$$
n_{R}-n_{M}
$$

Top View,
Frame Rotating with Moon (n_{M})

Ring-Moon Interactions
 Moon

Ring

$$
n_{R}-n_{M}
$$

Top View,
Frame Rotating with Moon (n_{M})

Ring-Moon Interactions
 Moon

Ring

$$
n_{R}-n_{M}
$$

Top View,
Frame Rotating with Moon (n_{M})

Gravitational Deflection

$$
e_{R}>0 \quad e_{R}=0
$$

- Ring particle is deflected by moon's gravity
- Epicycles form:
- $e_{R} \approx 2.24 \frac{M_{M}}{M_{P}} \frac{a}{\left|a_{M}-a_{R}\right|} \quad$ (Julian \& Toomre, 1966)
- Formula valid for a small moon and a nearby ring

Gravitational Deflection

- Period $T=2 \pi / K_{R}$
- $\Delta \theta=T\left|n_{R}-n_{M}\right| \cong 2 \pi \Delta n / n \cong 3 \pi \Delta a / a$
- Wavelength $=a \Delta \theta=3 \pi \Delta a$

Real-World Example:

The Encke Gap and the Discovery of Pan

A Ring Encke Gap

- "Eyeball" analysis of a photographic print.
- by Jeff Cuzzi, Phoenix Airport, 1985.
- Discovery of a wavy edge.
- Implies that there is a moon in the Encke Gap!
- Wavelength ~ 1500 km implies that the moon is ~ 150 km away, near the middle of the gap.
- Amplitude ${ }^{\sim} 5 \mathrm{~km}$ implies moon is $\sim 10 \mathrm{~km}$ in radius.

Outer edge: $n_{R}<n_{M}$

 $3 \pi \Delta a$

 $3 \pi \Delta a$

 Δa

 Δa

 \sim

 \sim
 Inner edg
 - A wavy edge should lead the moon on the inner edge; trail it on the outer.

- Collisions may damp the pattern with increasing distance from the moon.
- From Cuzzi \& Scargle (1985)
- Searched all fineresolution Voyager images.
- Isolated moon within a 20° "box" that was not imaged well.

- From Cuzzi \& Scargle (1985)
- Searched all fineresolution Voyager images.
- Isolated moon within a 20° "box" that was not imaged well.

- From Cuzzi \& Scargle (1985)
- Searched all fineresolution Voyager images.
- Isolated moon within a 20° "box" that was not imaged well.
- ...but this was NOT the end of the story!

Moonlet Wakes

- Ripples start in phase at the moon's longitude.
- Wavelength λ varies with $\triangle a: \lambda=3 \pi \Delta a$.
- Ripples go out of phase downstream from moon.
- This produces a spiral pattern.

- Ripples start in phase at the moon's longitude.
- Wavelength λ varies with $\Delta a: \lambda=3 \pi \Delta a$.
- Ripples go out of phase downstream from moon.
- This produces a spiral pattern.
6λ
5 λ
4λ
3λ
$2 \lambda \quad \lambda$

Encke Gap

Voyager Photopolarimeter Occultation Profile

- The same pattern makes the star dim periodically during an occultation!
- The spiral winds tighter with distance downstream from the moon.
- Therefore, analysis of the wake pattern revealed the exact orbit of the moon.
- A computer-aided search selected the Voyager images that captured "Pan."

- The same pattern makes the star dim periodically during an occultation!
- The spiral winds tighter with distance downstream from the moon.
- Therefore, analysis of the wake pattern revealed the exact orbit of the moon.
- A computer-aided search selected the Voyager images that captured "Pan."

Pan's wake as seen by Cassini

The Encke Gap edge as

 now seen by Cassini...
Discovery of "Daphnis" in the Keeler Gap

Prometheus produces a "wake" pattern much like Pan

Gravitational Deflection

Top View,
Frame Rotating with Moon (n_{M})

Gravitational Deflection

Top View,
Frame Rotating with Moon (n_{M})

Gravitational Deflection

Question: What if $\Delta \theta=2 \pi / p$ for integer p ?
Top View,
Frame Rotating with Moon (n_{M})

Gravitational Deflection

Question: What if $\Delta \theta=2 \pi / p$ for integer p ?

Top View,
Frame Rotating with Moon (n_{M})

Gravitational Deflection

Question: What if $\Delta \theta=2 \pi / p$ for integer p ?

Top View,
Frame Rotating with Moon (n_{M})

Gravitational Deflection

Question: What if $\Delta \theta=2 \pi / p$ for integer p ? Answer: Resonance!
Top View,
Frame Rotating with Moon (n_{M})

Lindblad Resonances

$$
\Delta \theta=2 \pi / p \longrightarrow
$$

- Epicyclic period of ring particle $T=2 \pi / K_{R}$.
- In this period, the moon shifts $T\left|n_{R}-n_{M}\right|=2 \pi / p$.

$$
p\left|n_{R}-n_{M}\right|=K_{R}
$$

- Can be written in other forms.

Lindblad Resonances

- Vertical resonances are perfectly analogous:

$$
p\left|n_{R}-n_{M}\right|=v_{R}
$$

- These can lead to ...
- Sharp ring edges.
- Gaps.
- Density and bending waves.

Mimas 2:1 Resonance

- Confines the B Ring
- Opens the Cassini Division

Atlas 7:6 Resonance

\author{

- Confines the A Ring
}

Mimas 5:3 Density and Bending Waves

Ring-Moon Interactions \#2

Moon

Ring

Top View,
Frame Rotating with Ring $\left(n_{R}\right)$

Ring-Moon Interactions \#2

Top View,
Frame Rotating with Ring $\left(n_{R}\right)$

Ring-Moon Interactions \#2

Top View,
Frame Rotating with Ring $\left(n_{R}\right)$

Ring-Moon Interactions \#2

Ring

Top View,
Frame Rotating with Ring (n_{R})

Ring-Moon Interactions \#2

Top View,
Frame Rotating with Ring (n_{R})

Orbital Energy Exchange

Force before

Force
after

- Force \times Distance $=$ Work.
- Work before encounter cancels work after.
- With no net change in energy, semimajor axis is conserved.

Orbital Energy Exchange

- Work after encounter is larger than work before.
- Net work is negative, so semimajor axis decreases and mean motion increases.
- Ring bodies no longer have the same mean motion.

Back to the F Ring...

Pandora Perturbs the Ring

Pandora Perturbs the Ring

Pandora and Prometheus:

"Shepherds" or "Wolves"?

Orbital Energy Exchange

Ring

Orbital Energy Exchange

Orbital Energy Exchange

Questions: What if $\Delta \theta=2 \pi / p$ for integer p ? What if perturbation is smaller?

Corotation Resonances

Ring
Questions: What if $\Delta \theta=2 \pi / p$ for integer p ? What if perturbation is smaller?

Corotation Resonances

Questions: What if $\Delta \theta=2 \pi / p$ for integer p ?
What if perturbation is smaller?
Answer: Stable Resonant Confinement!

Corotation Resonances

$|\longleftarrow \Delta \theta=2 \pi / p \longrightarrow|$

- Epicyclic period of moon $T=2 \pi / \mathrm{k}$.
- In this period, the ring shifts $T\left|n_{R}-n_{M}\right|=2 \pi / p$.

$$
p\left|n_{R}-n_{M}\right|=K_{M}
$$

- Compare to Lindblad: $\mathrm{p}\left|n_{R}-n_{M}\right|=\underline{K_{R}}$

Corotation Resonances

- Vertical resonances are almost perfectly analogous:

$$
p\left|n_{R}-n_{M}\right|=v_{M} / 2
$$

Why the difference?

- An inclined moon has two close approaches per orbit rather than one!
- These can lead to ...
- Confinement of clumps and arcs.

An Arc in Saturn's G Ring

An Arc in Saturn's G Ring ...confined by the Mimas 7:6 CER

Neptune's Ring-Arcs Confined by the $43: 42$ CIR with Galatea

Neptune's Ring-Arcs Confined by the $43: 42$ CIR with Galatea

- Except...
- it's not really at the resonant orbif.
- arcs cross the corotation boundaries where material is unstable.
- the leading two arcs have almost vanished now.
- ...more work is needed.

What is "Shepherding"?

"Traditional" Shepherding

- Particle approaches with $e_{R}=0$.
- Particle departs with $e_{R}>0$.

"Traditional" Shepherding

- Particle approaches with $e_{R}=0$.
- Particle departs with $e_{R}>0$.

"Traditional" Shepherding

- Particle approaches with $e_{R}=0$.
- Particle departs with $e_{R}>0$.
- If e_{R} is damped before the next passage, then conservation laws require Δa to increase very slightly.

"Traditional" Shepherding

- Particle approaches with $e_{R}=0$.
- Particle departs with $e_{R}>0$.
- If e_{R} is damped before the next passage, then conservation laws require Δa to increase very slightly.

Case \#1: Overlapping Resonances

Case \#2: Lindblad Resonances

Gase \#3: Gravitational Stirring

Metís shepherds"inner edge

Gase \#3: Gravitational Stirring

Metís shepheros" nner edge

Case \#4: None of the Above?

