
 
 
 
 

i) At the initial orbit 
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ii) At the final orbit: 
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Generalized to include the circular-
elliptic transfer, the elliptic-elliptic-co-
axial and out-of-plane transfers 
Analytical proof in Barrar (1963) 
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AA..  A first impulse ∆V0 is applied in the initial orbit that 

makes the spacecraft goes to na elliptic orbit with 

periapsis R0 and apoapsis R (R > Rf); 

BB..  When the spacecraft is at the apoapsis, a second impulse 

∆V is applied when the spacecraft is at the periapsis to 

circularize the orbit; 

CC..  A third impulse is applied to circularize the orbit. 

 

∗ Rf / R0 ≅ 55 (Earth-Moon) 

∗ Bi-Parabolic is the limit 
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Hoelker and Silver (1959): 

Better for Rf / R0 > 11.94. 
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Bi-Impulsive Transfer, can be extended to 3-D. 



 

 

 

The patched conic method divede the trajectories in two parts: 

11..  The first leg neglects the effect of the Moon and any method (Holmann, bi-elliptic, etc.) can 

be used to transfer the spacecraft to an orbit that crosses the Moon’s path; 

22..  When the spacecraft reaches a position where the Moon’s gravity field dominates its 

motion, the Earth’s effects are neglected and orbit is studied as a Keplerian lunar orbit. 



 

 

Dynamics: 
∗ Two-Body Problem 

∗ Two-Body Perturbed Problem 

∗ Three-body Problem (in particular the restricted version of this problem) 

∗ N-Bodies Problem 

 

Actuators (control): 
∗ Impulsive system (∆V) 

∗ Continuous system 

 

Optimization methods: 
∗ Direct methods (search of parameters that minimizes a certain objective function) 

∗ Indirect method (first-order necessary conditions are used) 

∗ Hybrid approach (first-order necessary conditions are written and transformed in a search of parameters) 



 

 

 

 

 

∗ Optimal solution is hohmann type (impulse applied at the apsis); 

∗ The best two-impulse transfer is the one that uses the most distant apsis (H1); 

∗ TRI1 is better than TRI2; 

∗ Best H vs Best TRI depends on the initial and final orbits; 
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H1: To apoapsis 
H2: To periapsis TRI1: To apoapsis 

TRI2: To periapsis



 

 

 

 

 

∗ Optimal solution is hohmann type (impulse applied at the apsis); 

∗ The best two-impulse transfer is the one that uses the most distant apsis (H1); 

∗ TRI1 x TRI2 depends on the initial and final orbits; 

∗ Best H vs Best TRI depends on the initial and final orbits; 
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1

2 TRI2

TRI1

H1: To apoapsis 
H2: To periapsis 

TRI1: To periapsis
TRI2: To apoapsis 



 
 
 
 
 
 
∗ There are two choices for each type of transfer (using 2 or 3 impulses); 

∗ H2 is better than H1; 

∗ TRI1 is better and faster then TRI2; 

∗ H2 x TRI1 depends on the initial and final orbits. 

 

H2

H1

TRI1

TRI2

H1: To apoapsis 
H2: To periapsis 

TRI1: To periapsis
TRI2: To apoapsis 



EEQQUUAATTIIOONNSS  TTOO  MMIINNIIMMIIZZEE  TTOOTTAALL  ∆∆VV  
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SSppaaccee  TTrraajjeeccttoorriieess 

 

We show space trajectories from one body back to the same body 

and to the Lagrangian points.  
 

The mathematical model is the restricted three-body problem. 

Earth-Sun and the Earth-Moon. 
 

Five families of transfer orbits are found.  
 

 



The problem of sending a spacecraft from the Earth to the 

Lagrangian points L4 and L5 is treated. 
 

Two transfer orbits from the Earth to L4 and to L5 are found.  
 

Numerical integration is extended beyond the points and it is 

found, the spacecraft passes near the Lagrangian points L3, L4 and 

L5 and comes back to the neighborhood of the Earth. 

 



In general, the orbits found here can be applied to: 

 

∗ Transfers between any two points in the group formed by the 

Earth and the Lagrangian points L3, L4, L5 with near-zero ∆V; 

∗  

Make a tour to the Lagrangian points for reconnaissance 

purposes with near-zero ∆V for the entire tour; 

 

Build a cycler transportation system linking all the points 

∗ 

∗ 

∗ 

involved or only two of them. 

 



  TThhee  TThhrreeee--BBooddyy  LLaammbbeerrtt’’ss  PPrroobblleemm  
 

This problem can be formulated as:  

 

"Find an orbit (in the three-body context) that makes a spacecraft 

to leave a given point A and goes to another given point B".  

 

The problem becomes the Lambert's three-body problem: 

 

 

 



"Find an orbit (in the three-body problem context) that makes a 

spacecraft to leave a given point A and go to another given point B, 

arriving there after a specified time of flight". By varying the time 

of flight, it is possible to find a family of orbits. 

 

 



TThhee  SSoolluuttiioonn  ooff  tthhee  TTPPBBVVPP  

  

The following steps are used: 

 

∗ Guess a initial velocity V
r

i, so together with the position rr i, the 

initial state is known; 

 

Guess a final regularized time τf  and integrate the regularized 

equations of motion from τ0 = 0 until τf; 

 

∗ 

∗ 

∗ 

 



∗ Check the final position fr
r

 obtained with the prescribed final 

position and the final real time with the specified time of flight.  

∗  

If there is an agreement the solution is found. Not, an increment in 

the initial guessed velocity V
r

i and in the guessed final regularized 

time f is made and the process goes back to step i). τ

 



  TTrraajjeeccttoorriieess  ffrroomm  tthhee  MMoooonn  ttoo  tthhee  MMoooonn 
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      Hyperbolic Transfer Orbit (t = 1.74 days)              Elliptic Transfer Orbit (t = 13.48 days) 

 



  TTrraajjeeccttoorriieess  ffrroomm  tthhee  MMoooonn  ttoo  tthhee  MMoooonn 
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Elliptic Transfer Orbit (t = 24.78 days) 

 



 

TTrraannssffeerr  OOrrbbiittss  wwiitthh  MMiinniimmuumm  ∆∆VV  
  
 

The two-body solution is used as the first guess and a trial and 

error technique (in the initial velocity) is used to find the solution. 

The ∆V for escape velocity from the Earth is 0.3735 canonical units. 

The ∆V found in this transfer orbit is 0.3839 canonical units. 
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Transfer Orbit with Minimum ∆V from the Earth Back to the Earth, as Seen in the Rotating Frame. 
 
 

 



Data for the transfer orbit with minimum ∆V from the Earth back 
to the Earth 

 

P
r

9997 
0043 
957 
1500 
83944 

 

R

 

5886 
49850 

094343 
93889 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
osition and velocity in the 
otating frame in canonical 

units when leaving the 
Earth 

 
x = 0.99
y = -0.00
&x

&

 = 0.096
y = -0.37
∆V = 0.3
 

Jacobi constant 
egularized transfer time 

Canonical transfer time 
Transfer time in years 

 
J = -1.49
Tr = 56.0
Tc = 25.
Ty = 3.9



TTrraannssffeerrss  EEaarrtthh--llaaggrraannggiiaann  ppooiinnttss::  rreessuullttss  
  

The "SHORT-5-4" Orbit 
∗ A shorter time is required. Total tour is about 13 years. The legs 

connecting L4 and L5 to the Earth has about 2.1 years each; 

It also has closer approaches to the Lagrangian points visited, 

compared to the "LONG" transfers; 

After the first close approach this orbit continues in the same 

direction. The second trajectory is similar to the first one. There 

are 12 "crossing points", candidates for a one-burn maneuver 

which transfers the spacecraft between the trajectories. After this 

∗ 

∗ 

 



maneuver the spacecraft starts again its journey to L5, L3, L4 and 

the Earth 
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The "LONG-4-5" Orbit 
 

∗ It has the closest approach with the Earth at the end of the first 

revolution; 

∗ Very close approaches to the Lagrangian points and the Earth again 

exist in at least two more revolutions, with no nominal corrections 

nominal corrections; 

required. It makes this orbit the best one for a continuous cycler without 

This orbit has the characteristic of reversing the direction of its motion 

after some of the "swing-by". 
 

∗ 
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The "SHORT-4-5" Orbit 
 
∗ After the first close approach the spacecraft starts a new tour in the 

reverse order. The first five revolutions have alternating directions of 

motion; 

∗ 

described. The period for an Earth-to-Earth trip is about 11 years and 

about 1.8 years each way; 

It has the shortest transfer time (in the first revolution) of all orbits 

the legs connecting the Earth and the Lagrangian points L4 and L5 last 

It has the closest approaches to the Lagrangian points visited (during the 

first and second revolutions). 

∗ 
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  AA  CCyycclleerr  TTrraannssppoorrttaattiioonn  SSyysstteemm  BBeettwweeeenn  tthhee  EEaarrtthh  
aanndd  tthhee  LLaaggrraannggiiaann  PPooiinnttss  LL44  aanndd  LL55  

 

This "swing-by" can be used to build a cycler transportation system 

between the Earth and L5. If the spacecraft starts at L5 with zero velocity, 

it is possible to apply an impulse of 0.0274 (816 m/s) to get Vx = -0.0271 

and Vy = 0.0040. So, the spacecraft follows one trajectory that is part of 

the SHORT-4-5. Then, it goes to the Earth, makes the "swing-by" and 

returns to L5, arriving there with Vx = -0.0018, Vy = 0.0263. Then, it is 

possible to apply an impulse ∆V = 0.0337 (1003.8 m/s), such that its 

velocity goes to Vx = -0.0271, Vy = 0.0040 again and it starts the cycler 

one more time.  
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t = 0 The spacecraft leaves L5 from rest (as seen in 
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t =
1.80 

 The spacecraft arrives at the Earth, makes a 
swing-

years 
by to reverse the sense of motion and it 

starts going back to L5 

t =
7.62 

 The spacecraft arrives at L5. A new impulse of 
∆V = 0.0377 (1003.8 m/s) is applied to send it 
back to the Earth and to start the cycler again years 
0.00 0.20 0.40 0.60 0.80 1.00 1.20
-1.00

 

 



To reproduce this cycler system for the Lagrangian point L4 
we can use the mirror image theorem. The time-line for a complete 
cycler is: 
 

t = 0 The spacecraft leaves L4 from rest (as seen in the rotating frame) with an 
impulse of ∆V = 0.0274 (816 m/s) 

t = 5.82 
years 

The spacecraft arrives at the Earth, makes a swing-by to reverse the sense 
of motion and it starts going back to L4 

t = 7.62 
years 

The spacecraft arrives at L4. A new impulse of ∆V = 0.0377 (1003.8 m/s) is 
applied to send it back to the Earth and to start the cycler again 
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The "LONG-5-4" Orbit 
 

∗ This is the orbit with smaller residual velocity during the close 

approaches with the Lagrangian points; 

∗ 

revolution.  

After completing the first revolution, the spacecraft makes a 

"swing-by" with the Earth, changes its direction of motion (as seen 

in the rotating frame) from "clock-wise" to "counter-clock-wise" 

and goes back to pass near L4, L3, L5 and the Earth, in a second 
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AAnn  OOppttiioonn  ffoorr  aa  FFaasstteerr  CCyycclleerr  TTrraannssppoorrttaattiioonn  SSyysstteemm  
BBeettwweeeenn  tthhee  EEaarrtthh  aanndd  LL55  oorr  LL44  

  

The spacecraft leaves L4 (by applying an impulse such that Vx = 

26.8 m/s and Vy = 47.7 m/s, goes to the Earth, and returns to L4 

with the impulse given by the Earth's swing-by. Next, an extra 

impulse is applied, to make a fine adjustment that allows M3 to 

arrive at L4. Then, after M3 arrives at L4, it is necessary to apply 

another impulse to reverse its motion and send it back to the Earth, 

following the same trajectory it did in the first revolution.  
 

 



 
t = 0 The spacecraft leaves L4

from rest (as seen in the 
rotating frame) with an 
impulse of ∆V = 56.6 m/s

t = 4.07 years The spacecraft arrives at 
the Earth, makes a 
"swing-by" with the 
Earth to reverse the sense 
of motion and it starts 
going back to L4 

t = 5.33 years An extra maneuver with 
∆V = 0.02 (560 m/s) is 
performed to adjust the 
final arrival at L4 

t = 5.86 
years 

The spacecraft arrives at 
L4. A new impulse with 
∆V = 0.05 (1500 m/s) is 
applied to send it back to 
the Earth and to start the 
cycler again 
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The result is a trajectory that requires 4.0728 years for the Earth-

bound trip, 1.7825 years for the L4-bound trip and about 2060 m/s 

per revolution in maneuvers. It is a little more expensive than the 

previous system (2060 x 1820 m/s), but it is faster (5.86 x 7.62 

years).  
 

 



A similar system can be build between the Earth and L5 by 

using the mirror image theorem. Note that the mirror image of the 

legs for an Earth-bound trip in now a L5-bound trip and the mirror 

image of the L4-bound leg is now the Earth-bound leg.  

 
t = 0 The spacecraft leaves L5 from rest (as seen in the rotating frame) with an 

impulse of ∆V = 56.6 m/s 
t = 0.53 
years 

An extra maneuver with ∆V = 0.02 (560 m/s) is performed to adjust the final 
arrival at the Earth 

t = 1.79 
years 

The spacecraft arrives at the Earth, makes a "swing-by" with the Earth to 
reverse the sense of motion and it starts going back to L5 

t = 5.86 
years 

The spacecraft arrives at L5. A new impulse with ∆V = 0.05 (1500 m/s) is 
applied to send it back to the Earth and to start the cycler again 
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Position, Velocity and Time for the passages by the Lagrangian points in 
Canonical Units (referred to the Rotating frame) 

 Orbit "SHORT-5-4" 
Point   V    x y R  Vx y V t
Earth     - - - 0.0000 0.3737 0.3737 0.00

L5 0.5007       -0.8696 0.0037 0.0103 0.0198 0.0223 13.30
L3        -1.0026 0.0088 0.0092 0.0085 -0.0205 0.0222 40.61
L4        0.5086 0.8671 0.0087 -0.0043 0.0230 0.0234 68.38

Earth        1.0054 0.0000 0.0054 0.0161 0.0373 0.0406 82.00
Orbit "LONG-5-4" 

Earth    - - - 0.0000 0.3729 0.3729 0.00
L5 0.5223       -0.8666 0.0223 -0.0017 -0.0167 0.0168 26.64
L3       -1.0272 0.0000 0.0272 -0.0066 0.0440 0.0449 80.07
L4        0.5011 0.8732 0.0073 0.0009 0.0016 0.0019 130.75

Earth        1.0000 0.0050 0.0050 -0.0315 -0.0085 0.0326 156.34
Orbit "SHORT-4-5" 

Earth    - - - 0.0000 -0.3740 0.3740 0.00
L4 0.5004       0.8635 0.0025 0.0240 -0.0112 0.0264 11.39
L3        -0.9981 -0.0025 0.0031 0.0006 0.0265 0.0266 34.47
L5        0.4985 -0.8617 0.0046 -0.0271 0.0040 0.0274 57.79

Earth        0.9999 -0.0008 0.0008 0.0773 -0.0452 0.0895 69.11
Orbit "LONG-4-5" 

Earth    - - - 0.0000 -0.3727 0.3727 0.00
L4 0.4929       0.8547 0.0133 -0.0099 0.0127 0.0161 29.46
L3        -0.9652 -0.0004 0.0348 -0.0018 -0.0587 0.0588 87.74
L5        0.4868 -0.8518 0.0191 0.0172 0.0226 0.0284 146.35

Earth        0.9999 -0.0000 0.0000 0.8086 -3.4852 3.5778 174.94

 



CCoonncclluussiioonnss 
 

Trajectories in the planar restricted three-body problem with 

near-zero ∆V to move a spacecraft between any two points on the 

group formed by the Earth and the Lagrangian points L3, L4, L5 in 

the Earth-Sun system are found. 

It is shown how to apply these results to build a cycler 

transportation system to link all the points in this group. 

 



 

 It is also shown how to use one or more "swing-by" with the 

Earth to build a cycler transportation system between the Earth and 

the Lagrangian points L4 and L5, with small ∆V required for 

maneuvers in nominal operation. 
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4 Inner Solar System: Use of Venus for trips to Mars. 
4 Tour to the Outer Solar System (Voyager). 
4 Multiple Swing-By (Earth, Venus, etc) to reach the Outer Solar 

System. 
4 Plane Change (Ulysses) to leave the ecliptic. 
4 Use of the Moon to escape from Earth. 
4 Use of the Moon to keep geometry. 
4 Tour to the Satellites of Jupiter or Saturn. 
 
 
 
 
 

 



TWO BODY MODEL 
 
ÖÖ  We assume planar motion 
ÖÖ  Three parameters describe the Swing-by: 
 

Rp = Periapse distance 
V∞ = Hyperbolic Excess Velocity or J (Jacobian constant)  

   or Vp (Periapsis velocity) 
ψ = Angle of approach (ψ is also the angle between p2 V  and V

rr ) 
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ÖÖ  PPaattcchheedd  CCoonniiccss  ffoorr  ffiirrsstt  aapppprrooxxiimmaattiioonn  
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THE SWING-BY MANEUVER AND SOME VARIABLES 
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THE SWING-BY MANEUVER AND SOME VARIABLES 
 

2V
r

 = Inertial velocity of Jupiter

−∞ V
r

= Velocity with respect to Jupiter before Swing-by 

+∞ V
r

= Velocity with respect to Jupiter after Swing-by  

rp = periapse distance 

Ψ = angle of approach 

δ = half of the deflexion angle 
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VECTORIAL ADDITION 
 

Vi = Inertial velocity before Swing-By 
V0 = Inertial velocity after Swing-By 
V2 = Inertial velocity of Jupiter 
V∞ - = Velocity with respect to Jupiter before Swing-By 
V∞ + = Velocity with respect to Jupiter after Swing-By 
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From Scott, S. A. and Braun, R. D., 1991. 
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Launch 11/15/2001 Pluto Flyby
6/27/2015

Maneuver
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PF350: 3 + ∆VEJGA Trajectory (From Weinstein, 1992). 
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Sun-Synchronous periodic orbit usin le lunar swing-by, [1,1,1] class. 
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INTRODUCTION 

The ballistic gravitational capture is a characteristic of some 

dynamical systems. 

A spacecraft change from a hyperbolic orbit into an elliptic orbit 

with a small negative energy without the use of any propulsive 

system.  

The force responsible is the gravitational force of the third body 

involved in the dynamics. So, this force is used as a zero cost control, 

equivalent to a continuous thrust applied in the spacecraft. 
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TRAJECTORIES TO THE MOON 
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MATHEMATICAL MODEL (RPTB) 

The canonical system of units and the rotating frame are used. 

Equations of motion are: 

 x
 = y2-x

  

  

∂
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 y
  = x2+y
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&&&  



 

 

 

4

where Ω is the pseudo-potential given by  

( )
r

+
r

)-1(+y+x
2
1 = 

21

22
   

µµ
Ω

    

The Jacobian constant is: 
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APPROACH TO STUDY THIS PROBLEM 
 

 
We study the two-body energy of the -Moon:  

 

r2VC 2
3 µ−=        

 

From C3 we know if the orbit is elliptic (C3 < 0), parabolic (C3 = 

0) or hyperbolic (C3 > 0) with respect to the Moon.  

 
For spacecrafts approaching the Moon, it is possible to use the 

gravitational force of the Earth to lower the value of C3.  
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The search for trajectories arriving at the Moon with the 

maximum possible value for the reduction of C3 is very important.  

 
Usually, a numerical approach of verifying the values of C3 is 

used to identify trajectories. If there is a change of sign in C3 from 

negative to positive when leaving the Moon, it means that a ballistic 

gravitational capture occurs in the positive sense of time. 



 

 

 

7

GRAVITATIONAL CAPTURE 
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STRATEGY TO FIND TRAJECTORIES 

 

The spacecraft starts its motion close to the Moon and a negative 

time step is used to determine its motion before the closest approach.  

The final conditions were converted into the initial conditions.  

A trajectory is considered a ballistic gravitational capture when 

the distance from the Moon reaches 100,000 km in a time less than 

50 days.  
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FORCES INVOLVED IN THE DYNAMICS 

Gravitational force of the Earth 

1
180-φ

Fg

M3

γ

Moon
Earth Φφ

The centrifugal force 

( µ)1-
180-φ

Fce

M3

Ap

L

MoonEarth

φφ

 



 

 10

 

EXAMPLE OF TRAJECTORY 

The curves are: 
 
 1: Gravitational radial force;  
2: Gravitational transversal force;  
3: Centripetal radial force;  
4: Centripetal transversal force;  
5: Resultant radial force;  
6: Resultant transversal force;  
7: Gravitational force in the direction of motion;  
8: Centripetal force in the direction of motion;  
9: Resultant force in the direction of motion.  
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EXAMPLE OF TRAJECTORY 
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Trajectory with C3 = -0.2 and α = 0o
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EXAMPLE OF TRAJECTORY 
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Trajectory with C3 = -0.15 and α = 0o
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EXAMPLE OF TRAJECTORY 
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Trajectory with C3 = -0.2 and α = 45o 
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EXAMPLE OF TRANSFER 
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