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European Space Astronomy Centre — European Space Agency

July 20, 2007



This page is left intentionally blank



Contents

1 What is SPICE? 7

2 Getting and installing SPICE 9

2.1 Fortran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 IDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 SPICE kernels 15

3.1 Types of kernels . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Generation of the kernels . . . . . . . . . . . . . . . . . . . . . 17

4 Time standards used in SPICE 21

4.1 UTC, Coordinated Universal Time. . . . . . . . . . . . . . . . 22

Leapseconds. . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 ET, Ephemeris Time. . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Barycentric Dynamical Time (TDB). . . . . . . . . . . 24

iii



4.2.2 Terrestrial Dynamical Time (TDT). . . . . . . . . . . . 24

4.2.3 Relationship between TDT and TDB. . . . . . . . . . . 24

4.3 SCLK, Spacecraft Clock Time. . . . . . . . . . . . . . . . . . . 29

5 Reference Frames and SPICE 35

5.1 Coordinate Systems and Reference Frames. . . . . . . . . . . . 35

The J2000 Reference Frame. . . . . . . . . . . . . . . . 36

Reference Frames for planets and other Solar System
bodies. . . . . . . . . . . . . . . . . . . . . . . 36

Inertial Reference Frames. . . . . . . . . . . . . . . . . 38

5.2 Rotating frames. . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Reference Frames in SPICE. . . . . . . . . . . . . . . . . . . . 39

5.3.1 Creating frames kernels. . . . . . . . . . . . . . . . . . 43

Euler Angles. . . . . . . . . . . . . . . . . . . . . . . . 46

Quaternions. . . . . . . . . . . . . . . . . . . . . . . . 48

6 Using SPICE. 53

6.1 More on NAIF ID’s. . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 More on SPICE kernels. . . . . . . . . . . . . . . . . . . . . . 58

6.2.1 brief. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.2 ckbrief. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2.3 commnt . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iv



6.2.4 Getting SPICE kernels. . . . . . . . . . . . . . . . . . . 60

6.2.5 The generic kernel. . . . . . . . . . . . . . . . . . . . . 61

6.3 Using SPICE. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Calculating the position of a body. . . . . . . . . . . . 63

Calculating the field of view of a camera. . . . . . . . . 66

Getting the coordinates of an image. . . . . . . . . . . 69

v



Introduction to SPICE 1

The present introduction to SPICE has been written taking as main source
of information the SPICE Required Readings and the SPICE Tutorials,

downloadable from NAIF:

http://naif.jpl.nasa.gov/naif

This introduction will focus on some SPICE parts, namely time and
reference frames. Also some general examples of SPICE usage will be

shown in a final chapter.

Although the C SPICE toolkit with the C++ programming language have
been used for all the examples in these notes, it shouldn’t be difficult for

the reader to translate them to other languages supported by SPICE, such
as Fortran or IDL. C++ is used instead of C because of its better I/O

capabilities and the possibility of in-place declaration of variables; no other
C++ specific features are used.
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Chapter 1

What is SPICE?

SPICE is a set of software routines (the SPICE toolkit) and a suite of data
formats that help a scientist use ancillary data to plan scientific observations
from a space vehicle and to analyze the science data gathered from those
observations. It may also help scientists and engineers in planning future
missions. In this context “ancillary data” means observation geometry data
and time conversion functions.

SPICE was developed and is maintained by the Navigation and Ancillary
Information Facility (NAIF) team of the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the U.S. National
Aeronautics and Space Administration (NASA). The SPICE system is
free of U.S. export restrictions and is available at no cost to the international
space science community. The system is available in several languages and
works (or can be configured to work) on all popular computing environments.
It was originally developed in Fortran; versions of SPICE in C (CSPICE )
and IDL (Icy) are available. There also is a Matlab beta version (Mice).

This multi-mission capability has been used for more than 20 years now on
many NASA missions and more recently on ESA’s planetary missions: Mars
Express, Venus Express, Rosetta, Huygens and Smart-1.

SPICE helps scientists to perform all kinds of geometrical and time calcu-
lations involving the spacecraft, instruments on board the spacecraft, Solar
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System bodies, ground stations, etc. Some particular situations where SPICE
can help are:

• What was the Rosetta position with respect to the Earth at one par-
ticular moment?

• For a given image of Mars taken by MGS, I know the spacecraft clock
reading. At what time was the image taken?

• I want to use images taken by Mars Express to search for rovers on
the surface of Mars. Is the pixel resolution of the MEX camera good
enough for that task?

SPICE stores geometry and time data in files called kernels. These are the
core of the system, since they provide position (ephemeris) information for
solar system bodies and spacecraft, time information and parameters for the
instruments onboard a spacecraft.

Understanding SPICE involves having some knowledge of the several (phys-
ical and logical) parts that make up the SPICE system, namely:

• The SPICE kernels.

• The utility programs distributed as part of the SPICE toolkit.

• The different time systems used in SPICE.

• The different reference frames used in SPICE.

• The SPICE toolkit.

The NAIF web page, http://naif.jpl.nasa.gov, is the official source of infor-
mation about SPICE.



Chapter 2

Getting and installing SPICE

Contents

2.1 Fortran . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 IDL . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

The SPICE toolkit can be found at http://naif.jpl.nasa.gov/naif/toolkit.html.
You have to choose the specific distribution for your programming language
and platform. Download it to the directory where you want it to be installed.

The following instructions apply to the UNIX/Linux operating systems. Re-
fer to the NAIF documentation to install SPICE in Windows and Mac ma-
chines.

2.1 Fortran

Open a shell and go to the directory where you’ve downloaded the toolkit.
To uncompress it, run the following command:

9
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$ tar xZf toolkit.tar.Z

The software will be uncompressed under a directory named toolkit. Go to
that directory, and run the script that you’ll find there:

$ cd toolkit

$ ./makeall.csh

It will take a while for the toolkit to compile. Once the compilation is done,
you are ready to use the SPICE toolkit under Fortran.

Figure 2.1: Installing the Fortran SPICE toolkit.

To compile SPICE programs in Fortran, you just need to specify the path to
the library in the command line when you call your Fortran compiler. For
example, suppose you have a source program called test.f, and the toolkit
installed at /usr/local/SPICE/toolkit. You can compile the program with
the following command line:

$ f77 -o test test.f /usr/local/SPICE/toolkit/lib/spicelib.a
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2.2 C

Open a shell and go to the directory where you’ve downloaded the toolkit.
To uncompress it, run the following command:

$ tar xZf cspice.tar.Z

The software will be uncompressed under a directory named cspice. Go to
that directory, and run the script that you’ll find there:

$ cd cspice

$ ./makeall.csh

Figure 2.2: Installing the C SPICE toolkit.

It will take a while for the toolkit to compile. Once the compilation is done,
you are ready to use the SPICE toolkit under C.
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To compile SPICE programs in C, you just need to specify the path to the
library and the include directory in the command line when you call your
C compiler. For example, suppose you have a source program called test.c,
and the toolkit installed at /usr/local/SPICE/toolkit. You can compile the
program with the following command line:

$ gcc -o test test.c /usr/local/SPICE/toolkit/lib/spicelib.a \

-I/usr/local/SPICE/toolkit/include

2.3 IDL

Open a shell and go to the directory where you’ve downloaded the toolkit.
To uncompress it, run the following command:

$ tar xZf icy.tar.Z

The software will be uncompressed under a directory named icy. Go to that
directory, and run the script that you’ll find there:

$ cd icy

$ ./makeall.csh

It will take a while for the toolkit to compile. Once the compilation is done,
you have to create a new environment variable called IDL DLM PATH to
the directory where icy.dlm and icy.so are located (the directory lib under
the icy main directory).

If you work on Linux with the bash shell, run on the command line1:

$ export IDL_DLM_PATH="/usr/local/SPICE/icy/lib"

1You might want to add the line to your .bashrc file to avoid having to run the same
command every time.
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Figure 2.3: Installing the IDL SPICE toolkit.

For csh based shells, run:

$ setenv IDL_DLM_PATH "/usr/local/SPICE/icy/lib"
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Chapter 3

SPICE kernels

Contents

3.1 Types of kernels . . . . . . . . . . . . . . . . . . . 16

3.2 Generation of the kernels . . . . . . . . . . . . . . 17

SPICE stores geometry and time data in files called kernels. These are the
core of the system, since they provide:

• information about the different reference frames used to describe the
position and movement of the bodies of the solar system.

• ephemeris information for spacecrafts, solar system bodies and even
ground stations.

• attitude (orientation) information, with respect to some reference frame,
for spacecrafts.

• information about the spacecraft clock and how to convert from it to
ephemeris time and/or UTC, and the other way around.

• mounting alignment and field-of-view geometry for the spacecraft’s in-
struments and antennas.

15
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Each kernel is a separated file whose extension identifies its type, as well as
whether it is a binary or text kernel1. A kernel stores information which can
be read by any application that uses the SPICE toolkit.

3.1 Types of kernels

A SPICE kernel can have one of the following types:

SPK Spacecraft and Planetary ephemeris. SPK kernels store position
(ephemeris) information for planets and/or other solar system bodies
and spacecrafts. They are binary kernels, and their file names have
extension ’bsp’.

PCK Planetary constants. PCK kernels store information about planets
and other bodies of the solar system. Information stored in a PCK
kernel can be, for instance, the mass of a planet, or how it rotates
as a function of time. They can be binary (extension ’bpc’) or text
(extension ’tpc’) files.

IK Instrument. IK kernels contain information about instrument param-
eters, like field of view of a camera or the number of pixels of a CCD.
They are text kernels, with extension ’ti’.

CK Pointing. C-kernels are binary kernels with extension ’bc’ which store
information about the orientation of the spacecraft or any of its sub-
structures.

EK Events. Events like the science plan or the experimenters notebook
are stored in this kernels. This type of kernels are the least developed
part of the SPICE system, and are not used within the ESA planetary
missions.

FK Reference Frame Specifications. In this type of text kernel (with ex-
tension ’tf’) can be found information about different reference frames
used in a mission, and how to transform vectors from one reference
system to another.

1For a binary kernel, the extension starts with a ’b’ and for a text kernel it starts with
a ’t’.
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SCLK Spacecraft Clock Correlation data. This text kernel (with file
extension ’tsc’) allow the SPICE system to translate from the spacecraft
clock coefficients to UTC or other time systems and vice-versa.

LSK Leapseconds. In a leapseconds kernel (text kernel with extension
’tls’) is stored information about the leapseconds that have occurred.

3.2 Generation of the kernels

There basically are three main sources for the SPICE kernels:

1. The SCLK and the SPK and CK kernels that store position and at-
titude of a spacecraft are made by measuring its state (position, ori-
entation and velocity), or by predicting it. They are mission specific.
For NASA missions, they are produced by NAIF, whereas for
ESA they are produced by the mission Science Operations
team2 with information from the ESOC flight dynamics team
and the support of NAIF.

2. FK and IK kernels, with information about the different reference
frames attached to the spacecraft and its substructures and about the
instruments on board the spacecraft, are made by the creators of the
instrument with the support of NAIF, and, for ESA missions,
the mission Science Operations team.

3. Other kernels with generic information, like some SPK with ephemeris
of the Solar System bodies, or the LSK kernel are provided by NAIF.

2The Science Operations team is a team dedicated to coordinate all the spacecraft
operations from a scientific point of view, so that the spacecraft can be be optimized in
terms of science production.
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A SPICE application will need some kernels to run, and the programmer
must know which ones and how to get them3. To make a kernel available
to an application, it has to be loaded via a call to the function furnsh c4.
As a first example of SPICE usage, we’ll create a program that loads the
leapseconds kernel:

#include <iostream>

using namespace std;

// The SPICE header file has to be included

#include <SpiceUsr.h>

int main( char argc, char *argv[] ) {

// Load the leapseconds kernel

furnsh_c( "naif0008.tls" );

cout << "Kernel loaded!" << endl;

return 0;

}

Although this is not a very useful program, it can give us some ideas as to
how SPICE works. For this program to run, the leapseconds kernel and the
executable have to be located in the same directory5. If that’s the case, we
won’t see nothing happen when we run the program; it jut loads the kernel,
prints the message and then exits.

We can try and see what happens if we change the name of the kernel or
delete it. SPICE will complain with an error message because it cannot find
the kernel, and then the program will abort. The output message ”Kernel
loaded!” is used for us to find out where the program finishes: it is not printed
in this case, which indicates that the program stops immediately after the
failure.

3failing to load one of the needed kernels will cause the application to abort.
4FURNSH in Fortran, cspice furnsh in IDL.
5The programmer can alternatively provide furnsh c with the full path to the kernel.
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Figure 3.1: Error message when failing to load a kernel.

Along with the toolkit (for C, Fortran and IDL), comprehensive hyper-text
documentation is provided, readable with a web browser. The reader is
encouraged to open it and see the explanation of the functions used in the
examples of this introduction.
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Chapter 4

Time standards used in SPICE

Contents

4.1 UTC, Coordinated Universal Time. . . . . . . . 22

4.2 ET, Ephemeris Time. . . . . . . . . . . . . . . . . 24

4.2.1 Barycentric Dynamical Time (TDB). . . . . . . . . 24

4.2.2 Terrestrial Dynamical Time (TDT). . . . . . . . . 24

4.2.3 Relationship between TDT and TDB. . . . . . . . 24

4.3 SCLK, Spacecraft Clock Time. . . . . . . . . . . 29

There are two widely used types of time standards, those related to the
rotation of the earth (TAI), and those related with the frequency of atomic
oscillations (ET, UTC,...). The earth rotation is not uniform, and therefore
the rate of the clocks based on it exhibit both periodic changes and long term
drifts. Atomic standards are the closest approximations we currently have
to a uniform time. Well see how this different types of times are handled by
SPICE.

SPICE supports several time systems, namely:

• UTC, Coordinated Universal Time.

• ET, Ephemeris Time.

21
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• SCLK, Spacecraft Clock Time.

4.1 UTC, Coordinated Universal Time.

The basis for the UTC is the International Atomic Time (TAI). It is
based on the atomic second as defined by the “oscillation of the undisturbed
cesium atom”. Atomic time is a count of the number of atomic seconds that
have occurred since the astronomically determined instant of January 1, 1958
00:00:00, at the Royal Observatory in Greenwich.

UTC is a system of time keeping that gives a name to each instant of time of
the TAI system. These names are formed from the calendar date and time
of day we use in our daily affairs. A date in UTC format has the look we
are used to for dates. For example, the next names refer to the same TAI
instant:

20 JUNE 2007

2007 JUNE 20

2007 20 JUNE

2007 6 20

6 20 2007

Ideally, every UTC day at 00:00:00 hours should correspond with midnight at
Greenwich, as observed astronomically1. However, the rotation of the Earth
is not uniform, which means that there is a difference between UTC midnight
and UT1. To keep the difference from being too large, UTC is occasionally
adjusted so that it never exceeds 0.9 seconds.

UTC can be represented in several ways in SPICE, two of the most used are:

1This time is called UT1. It is based on the rotation of the earth. It assumes that the
time between two consecutive passes of the sun above Greenwich is 24 hours.
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YYYY-MM-DDThh:mm:ss.fff The time is represented as year, month,
day of month, hours, minutes, seconds and fraction of second. For
example, 2005-10-12T12:50:55.103.

YYYY-DDDThh:mm:ss.fff The time is represented as year, day of year,
hours, minutes, seconds and fraction of second. For example, 2007-
138T00:00:00.000.

Leapseconds.

When Greenwich UT1 midnight lags behind midnight UTC by more than
0.7 seconds, a leap second will be added to the collection of UTC names.
This leapsecond has traditionally been added after the last “normal” UTC
name of December 31 or June 30. When a leapsecond is added at the end of
a year, UTC time progresses in the following way:

... DECEMBER 31 23:59:58

... DECEMBER 31 23:59:59

... DECEMBER 31 23:59:60

... JANUARY 1 00:00:00

If Greenwich UT1 midnight runs ahead of UTC midnight by more than 0.7
seconds, a negative leapsecond will be added. In this case, the progression
will be:

... DECEMBER 31 23:59:57

... DECEMBER 31 23:59:58

... JANUARY 1 00:00:00
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4.2 ET, Ephemeris Time.

Ephemeris time is the uniform time scale represented by the independent
variable in the differential equations that describe the motions of the plan-
ets, sun and moon. There are two forms of ephemeris time: Barycentric
Dynamical Time (TDB) and Terrestrial Dynamical Time (TDT).

4.2.1 Barycentric Dynamical Time (TDB).

Barycentric dynamical time is used when describing the motion of bodies
with respect to the solar system barycenter.

4.2.2 Terrestrial Dynamical Time (TDT).

Terrestrial dynamical time is used when describing motions of objects near
the earth. As far as measurements have been able to detect, TDT and TAI
change at the same rate. The difference between them is defined to 32.184
seconds.

4.2.3 Relationship between TDT and TDB.

TDB is believed to be in agreement with the time that would be kept by an
atomic clock located at the solar system barycenter. A comparison of the
times kept by a clock at the solar system barycenter with a TDT clock on
earth would reveal that the two clocks are in close agreement but that they
run at different rates at different times of the year. This is due to relativistic
effects. At some times in the year the TDT clock appears to run fast when
compared to the TDB clock, at other times of the year it appears to run slow.
In SPICE, the difference between TDT and TDB is computed as follows:

TDB − TDT = Ksin(E)
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where K is a constant, and E is the eccentric anomaly of the heliocentric
orbit of the Earth−Moon barycenter (see figure 4.1).

Figure 4.1: Eccentric anomaly of the Earth orbit. The point p represents
the Earth, and the point s the Sun.

When ephemeris time is called for by Toolkit routines, TDB is the implied
time system. We cal this time Ephemeris Time (ET). Ephemeris Time
is given in terms of seconds past a reference epoch. The reference epoch
used throughout the Toolkit is the epoch J2000 (roughly noon on January
1, 2000).

SPICE provides functions to convert from UTC to ET and vice-versa. The
following example shows it:

#include <iostream>

using namespace std;
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#include <SpiceUsr.h>

int main( char argc, char *argv[] ) {

// Load the leapseconds kernel

furnsh_c( "naif0008.tls" );

SpiceChar utc[ 50 ] = "20007-07-23T00:00:00";

SpiceDouble et;

// Convert from UTC to ET

utc2et_c( utc, &et );

cout << utc << " UTC => " << et << " ET" << endl;

// Convert from ET to UTC

et2utc_c( et, "ISOC", 3, 50, utc );

cout << et << " ET => " << utc << " UTC" << endl;

return 0;

}

Here a few more characteristics of SPICE are presented.

• CSPICE defines its own set of data types, and the user is encouraged
to use them instead of the C standard types; this will guarantee that
the software will still compile if the definition of the SPICE data types
is changed in the future. For example, the type SpiceChar is defined
to be a normal C char. However, that definition can be changed in
future, and since functions like et2utc c expect a string of SpiceChar,
backwards compatibility is assured by sticking to SpiceChar instead of
char.

• As we said before, the conversion from ET to UTC and vice-versa
needs a leapseconds kernel to be performed; therefore, the kernel has
to be loaded via a call to furnsh c. If the line where the function is



Introduction to SPICE 27

called is deleted, the program will abort when it tries to make the first
conversion (utc2et c) (see figure 4.2).

Figure 4.2: Doing time conversions without a leapseconds kernel.

• The prototypes of almost all the CSPICE functions follow the same
convention: all the input arguments are at the beginning of the list of
parameters, followed by pointers to the output arguments. This is why
in the call to utc2et c the address of et is specified.

The call to et2utc c might seem a bit dark. The list of parameters is as
follows:

1. et the ephemeris time to be converted to UTC.

2. “ISOC” a string specifying the format of the output UTC string. In
this case, it will be YYYY-MM-DDThh:mm:ss.fff

3. 3 an integer specifying the number of digits for the fraction of second.

4. 50 an integer specifying the length of the UTC string.
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5. utc an array of SpiceChar that holds the UTC string. Since an array
in C is actually a pointer, the address of the string is implicitly passed
to the routine.

The program converts an UTC time to ET, and then back to UTC. Obviously,
the result will give us the original UTC time.
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4.3 SCLK, Spacecraft Clock Time.

Most spacecrafts have an onboard clock, that controls the times at which
various actions are performed by the spacecraft and its science instrument.
This clock is not a normal one, but rather a counter, which counts instants
of time, called ticks. The duration of each instant of time and how it is
represented by the clock depends on the particular spacecraft. A spacecraft
clock can be made up of several counters, each one increasing its value in steps
of one when the previous one reaches its maximum value2. For example, the
Galileo clock has the following format:

rrrrrrrr:mm:t:e

where

Field Time unit Modulus

rrrrrrrr 60 2

3
s. 16777215

mm 2

3
s. 91

t 1

15
s. 10

e 1

120
s. 8

Table 4.1: Components of the Galileo spacecraft clock.

In this context, modulus means the maximum value the field can reach, minus
one. For example, one run of the counter could look like this:

...

00001234:15:8:6

00001234:15:8:7

2This is also how a wall clock behaves.
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Figure 4.3: Example of the evolution of a S/C clock with time.

00001234:15:9:0

...

00001234:15:9:6

00001234:15:9:7

00001234:16:0:0

00001234:16:0:1

...

To make things more complicated, the spacecraft clock is not guaranteed to
have a constant rate, it can start going faster or slower than before, and it
even can jump or suffer a reset. In the figure 4.1 an example of how a S/C
clock can behave is plot. The continuous counting of ticks is represented,
like we would do, for example, if we represented the time in seconds. We can
see that the clock starts counting at 20 ticks

second
, and 30 seconds after the start

the clock starts counting more slowly. Then, at second number 46, the clock
jumps forward, and at second 70 there’s a jump back. The consequence of
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this jumps is that it might be that the same reading of the clock corresponds
to several time instants; in the figure, the tick 1200 of the counter corresponds
roughly to the seconds 52 and 80 since the clock start.

Therefore, more information is needed in order to be able to use the spacecraft
clock information without ambiguity. To this purpose, a new component,
called partition, is prepended to the clock string. A partition starts at the
beginning of the count, and any time there is a discontinuity in the clock.
For example, the next string

2/00001234:15:8:7

means that the reading 00001234 : 15 : 8 : 7 belongs to the second partition
of the clock, that is, after the first abrupt jump, and before the second one.
Note that a change in the speed of the clock does not necessarily mean the
start of a new partition, as it is stated in the figure 4.1.

When accessing the data from a spacecraft, the only information as to when
that data was generated or captured is the S/C clock. Therefore, a means to
turn the clock string into a readable time format is needed. SPICE provides
several functions to deal with clock strings, some of which are shown in the
next example. Note that direct conversion from a clock string to UTC is not
possible; it has to be done in two steps: first convert the string to ET, and
then convert the resulting ET time to UTC.

In the program below, a clock string read out of the Mars Express clock
is converted to UTC, and an UTC time is converted to the corresponding
reading in the Mars Express clock.
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#include <iostream>

using namespace std;

#include <SpiceUsr.h>

int main( char argc, char *argv[] ) {

// Load the leapseconds kernel

furnsh_c( "naif0008.tls" );

// Load the Spacecraft clock kernel for Mars Express

furnsh_c( "mex_070605_step.tsc" );

// Get the NAIF ID for Mars Express

SpiceInt mex_id;

SpiceBoolean found;

bodn2c_c( "Mars Express", &mex_id, &found );

cout << "NAIF ID for Mars Express: " <<

mex_id << endl << endl;

// Convert one S/C clock string to UTC

SpiceChar clock_str[ 50 ] = "1/0029401660.57967";

SpiceChar utc_str[ 50 ];

SpiceDouble et;

// Clock string to ET

scs2e_c( mex_id, clock_str, &et );

// ET to UTC

et2utc_c( et, "ISOC", 0, 50, utc_str );

cout << "UTC time for the clock string \"" <<

clock_str << "\": " << utc_str << endl;

// Convert from UTC to S/C clock string

strcpy( utc_str, "2007-07-23T00:00:00" );

// UTC to ET

utc2et_c( utc_str, &et );

// ET to Clock string

sce2s_c( mex_id, et, 50, clock_str );
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cout << "Clock string for the UTC time \"" <<

utc_str << "\": " << clock_str << endl << endl;

return 0;

}

The first step in this example is to load the two kernels we need for this
calculation, namely the leapseconds kernel and the spacecraft clock kernel
for Mars Express.

Then another feature of SPICE is introduced. SPICE assigns an integer,
called NAIF ID to any body of the Solar System, including spacecrafts and
their structures, and tracking ground stations. Many of them are “built in”
SPICE, while others have to be defined by the programmer3. The NAIF ID
for Mars Express is hardcoded in SPICE, so the programmer just has to call
the proper function (bodn2c c) to get it. ID’s for Solar System bodies are
positive, while those for spacecraft and their structures are negative.

The last lines convert a clock string to UTC, and an UTC time to a clock
string. As stated above, there has to be an intermediate step to convert either
format to ET, since SPICE does not provide a function to do the conversions
directly.

3When doing that, the programmer is responsible for choosing a NAIF ID which does
not clash with the predefined ones. NAIF provides a set of rules for choosing IDs.
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Chapter 5

Reference Frames and SPICE
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5.1 Coordinate Systems and Reference Frames.

A Coordinate System is a system for assigning a vector of numbers in R3 to
each and every point in the space. This application has to be unique in the
sense that any vector can be assigned to no more than one point.

Typical Coordinate Systems used in Physics are the cylindrical, spherical and
cartesian systems.

A Reference Frame, however, is a particular realization of a Coordinate Sys-
tem. For instance, a Reference Frame could be defined as a cartesian system

35
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with the origin at the center of the Earth, its +Z axis in the direction of the
North pole of the Earth, and its +X axis lying in the equatorial plane and
intersecting with the Greenwich meridian1.

The US Naval Observatory defines a Reference System as the complete spec-
ification of how a celestial coordinate system is to be formed. This encom-
passes the definition of its origin and planes, as well as all of the constants,
models and algorithms used to transform between observable quantities and
reference data that conform to the system. A Reference Frame is defined as a
set of identifiable points on the sky along with their coordinates, which serves
as the practical realization of a Reference System. In this document, how-
ever, we’ll define a Reference Frame as a realization of a cartesian Coordinate
System, specified by its origin and orientation of its axes.

The J2000 Reference Frame.

The main reference frame used in calculations for the Solar System bodies is
the J2000 reference frame. This is a cartesian frame with origin in the center
of the Earth, whose +Z axis is perpendicular to the mean equatorial plane of
the J2000 epoch2, and the +X axis contains the point where the Sun crosses
the equatorial plane from South to North, also at the J2000 epoch.

Reference Frames for planets and other Solar System bodies.

In mathematical and geodetic terminology, the terms latitude and longitude
refer to a right-hand spherical coordinate system in which latitude is defined
as the angle between a vector passing through the origin of the spherical
coordinate system and the equator, and longitude is the angle between the
vector and the plane of the prime meridian measured in an eastern direc-
tion. This coordinate system, together with cartesian coordinates, is used
in most planetary computations, and is called the Planetocentric Coordinate
Reference Frame.

Planetographic coordinates, however, are defined such that northern latitudes
are designated as positive, and the planetographic longitude of the central

1Note that the +Y axis is implicitly defined, because if the reference system is right-
handed, ŷ = ẑ × x̂, where n̂ is the unit vector along the positive direction of axis N.

2January 1st, 2000 at noon.



Introduction to SPICE 37

Figure 5.1: The J2000 Reference Frame.

meridian3, as observed from a direction fixed with respect to an inertial
reference frame, will increase with time, from 0o to 360o. This means that
west longitudes (measured positively to the west) will be used when the
rotation is prograde, and east longitudes (measured positively to the east)
when the rotation is retrograde4. Because of tradition, the Earth, Sun and
Moon are defined to have longitudes both east and west from 0o to 180o, or
east from 0o to 360o.

3For example, the meridian of Greenwich for the Earth.
4A body has a prograde rotation if, seen from above its north hemisphere, it rotates

counterclock-wise. Otherwise, it has a retrograde rotation.
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Inertial Reference Frames.

An important classification of Reference Frames attend to whether they are
inertial or not. In an inertial reference frame the Laws of Newton can be
applied to the movement of the bodies. Otherwise, the reference frame is
called non inertial. For instance, any reference frame attached to the Earth
is non inertial, since the Earth rotates; the J2000 reference frame is inertial.

5.2 Rotating frames.

Among the most important operations that are done when dealing with data
from a mission is the transformation between reference frames. For the same
result can be easily interpreted or not, depending on the reference frame
chosen to display it.

We’ll talk here about transformations called rotations. Intuitively, the notion
of rotation is wel understood. The Earth, for example, rotates about its
axis. A body that rotates doesn’t change its shape or properties, only its
orientation, and the points of the body along the rotation axis maintaint
their position.

Mathematically, a rotation is a linear transformation R, which maps the
coordinates of a vector in a reference frame A to its coordinates in another
frame reference B. It also must have the following properties:

• A rotation preserves norms. Given a vector ~v, then

‖R(~v)‖ = ‖~v‖

• A rotation preserve cross products. If ~a and ~b are vectors, then

R(~a ×~b) = R(~a) × R(~b)

The usual way to rotate a reference frame A, so it becomes other frame B,
is by specifying the rotation matrix. This is the matrix T that, given the
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components of a vector v in the frame A, produces the components of the
vector in the frame B, via matrix-vector multiplication:

vA = vxx̂ + vyŷ + vzẑ

T =





















t11 t12 t13

t21 t22 t23

t31 t32 t33





















vB = T × vA

For example, in the figure 5.2, we can see two reference frames, A and B,
and a vector, ~r, which in the frame A can be described as ~r = r × x̂a. It is
easy to prove that the matrix

T =





















0 1 0

0 0 1

1 0 0





















transforms the coordinates of the vector ~r in the frame A into the coordinates
of ~r in the frame B, where ~r = r × ẑb.

Other ways of specifying transformations between reference frames (namely
Euler Angles and quaternions) will be introduced later in this chapter.

5.3 Reference Frames in SPICE.

A number of Reference Frames are “built into” the SPICE frame subsystem,
so the user doesn’t have to do any special operation in order to use them.
Among these frames are:
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1. inertial frames such as J2000, Galactic System I frame, etc.

2. body-fixed frames based on IAU rotation models provided in text PCK
files, such as the Earth body-fixed rotating frame, and body-fixed
frames based on high precision Earth rotation models provided in bi-
nary PCK files.

All other frames are not “built into” SPICE. Instead, these frames have to be
specified via a set of parameters in a frames kernel file. The types of frames
defined in FK text kernels include:

1. CK-based frames, i.e. frames that change their orientation with time,
orientation being provided in CK kernels.

2. fixed offset frames, i.e. frames for which orientation is constant with
respect to another frame and is specified as part of the frame definition
stored in a text kernel.

3. Dynamic frames, i.e. frames for which orientation is based on dynamic
directions computed based on SPICE kernel data (SPKs, CKs, PCKs),
on mathematical models implemented in CSPICE functions or on for-
mulae defined in frame kernels.

Transformations between reference frames will often be needed. It is impor-
tant to understand that the only transformations that can be done
without loading any kernels are those involving only inertial refer-
ence frames. In the following example we’ll see the usual way to calculate
the transformation matrix, and how to transform vectors from one frame into
another:
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Figure 5.2: The same vector in two different frames, A and B.
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#include <iostream>

using namespace std;

#include <SpiceUsr.h>

int main( char argc, char *argv[] ) {

// Load the leapseconds kernel

furnsh_c( "naif0008.tls" );

// Convert to ET

SpiceDouble et;

utc2et_c( "2007-07-21T00:00:00", &et );

// Calculate the transformation matrix to go

// from ’J2000’ to ’Galactic System II’

SpiceDouble matrix[ 3 ][ 3 ];

pxform_c( "J2000", "GALACTIC", et, matrix );

// Print the transformation matrix

cout << "Transformation Matrix:" << endl;

for ( int i = 0 ; i < 3 ; i++ ) {

for ( int j = 0 ; j < 3 ; j++ )

cout << matrix[ i ][ j ] << "\t";

cout << endl;

}

cout << endl;

// Convert the vector ( 10, 10, 10 ) in ’J2000’

// into the ’Galactic System II’

SpiceDouble rj[ 3 ] = { 10, 10, 10 };

SpiceDouble rg[ 3 ];

mxv_c( matrix, rj, rg );

cout << "Vector in the Galactic System II frame:"
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<< endl;

cout << "( " << rg[ 0 ] << ", " << rg[ 1 ] << ", "

<< rg[ 2 ] << " )" << endl;

return 0;

}

The function pxform c computes the transformation matrix, matrix, to trans-
form vectors given in the origin frame, in this example J2000, into vectors
in the destination frame, Galactic System II, for a given instant of time, et.
Once the matrix is calculated, the vectors can be transformed via matrix
multiplication, by calling to the function mxv c.

Transforming between inertial frames is easy, since they are “hard-coded”into
the SPICE system. But most of times the programmer will have to deal with
other kinds of frames. For example, for every mission, a full set of reference
frames have to be defined, in order to specify the orientation of the spacecraft
with respect to some other reference frame (for example J2000), and also the
orientation of any of the spacecraft subsystems with respect to the spacecraft
reference frame5.

5.3.1 Creating frames kernels.

Creating a frames kernel is a difficult task which involves several steps, differ-
ent depending on the type of kernel we create. We’ll see in this chapter how
to create fixed offset kernels, which will help us to understand the frames
kernels provided for the planetary missions6. Our reference frame will be a
frame with origin on the center of the ESA ground station located at New
Norcia (Australia)7, and whose x axis points north along the local meridian,
the y axis points west along the local latitude and the z axis points up from
the surface of the Earth at that point.

5The first would be a CK-based frame, whereas the second would be a fixed offset one.
6For information about how to create another type of kernels, refer to the SPICE

Frames Required Reading.
7We’ll need the coordinates later on, which are 116.191502o East longitude, 31.048223o

South latitude.
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To create the fixed offset frames kernel, the first step is to specify the name
of the kernel, the ID code for the frame, the class number of the frame, the
ID for the frame center, and the internal ID code (CLASS ID) to refer to
the frame.

The name chosen for a frame must no exceed 26 characters taken from the set
including uppercase letters, numbers, underscore, and plus and minus signs.
We’ll call our frame COSPAR.

The class number for fixed offset frames is 4.

The frame ID is the NAIF ID8 whereby the frame will be identified. NAIF
reserves the codes from 1400000 to 4000000 for private uses; we’ll choose the
code 1400010 for the COSPAR reference frame.

The center of the frame is the New Norcia station, for which the NAIF ID is
398990.

The class ID is an integer used internally by the SPICE software. For fixed
offset frames, the ID must match the frame ID.

With all this information, we can create the first part of the kernel.

\begindata

FRAME_COSPAR = 1400010

FRAME_1400010_NAME = ’COSPAR’

FRAME_1400010_CLASS = 4

FRAME_1400010_CENTER = 398990

FRAME_1400010_CLASS_ID = 1400010

\begintext

Here we can see the general structure of any SPICE text kernel, which is a
set of pairs keyword = value. Everything in the kernel, until the first

\begindata

8more on NAIF ID’s in the next chapter.
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which appears alone in a line is taken as a comment. All the pairs keyword
= value have to be placed after a

\begindata

and before a

\begintext

to be considered. There can be any number of comment blocks and data
blocks in the kernel, for example:

This is a comment...

\begindata

KEYWORD1 = VALUE1

KEYWORD2 = VALUE2

...

\begintext

This is another comment...

\begindata

KEYWORD3 = VALUE3

KEYWORD4 = VALUE4

KEYWORD5 = VALUE5

...

\begintext

The last \begintext is optional.
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Since it’s a fixed offset frame, now the relation between the frame we are
defining and another known frame has to be specified in the kernel. We’ll
choose the Earth body-fixed rotating frame (IAU EARTH ):

TK_FRAME_1400010_RELATIVE = ’IAU_EARTH’

The most difficult part is specifying the way our frame is orientated with
respect to the relative frame. It can be done via a rotation matrix, Euler
Angles or quaternions.

Euler Angles.

In the figure 5.3, we can see that frame A of figure 5.2 can be turned into
frame B by two rotations of 90o, first about the Z axis, and then about
the X axis. Thus, rotating the frame A in the described way produces the
frame B. Each of the rotations can be described via a rotation matrix, which
transforms vectors from the original frame to the rotated frame.

Figure 5.3: Rotating frames.

According to Euler’s theorem, any rotation may be decomposed into three
rotations about the axis of the reference frame. If the rotations are written
in terms of rotation matrices B, C, and D, then a general rotation A can be
written as:

A = BCD

The matrix [α]x rotating αo about the x axis, is defined as follows:



Introduction to SPICE 47

[α]x =


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In the same way,

[β]y =


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
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[γ]z =


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
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cos γ sin γ 0

− sin γ cos γ 0

0 0 1




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
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





So, any rotation can be performed by choosing the proper rotation axis and
angles. For example, a rotation could be specified as rotating first π

2
about

the x axis, then π
4

about the z axis, and again π about the z axis:

R = [π]x[
π

4
]y[

π

2
]x

The three angles giving the three rotations are called Euler Angles. The
Euler Angles are not unique, that is, the same rotation can be decomposed
in different ways.
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Quaternions.

Quaternions are four dimensional vectors, on which a particular kind of arith-
metic is defined. The quaternions that have norm equal to 1 are called unit
quaternions.

Unit quaternions may be associated with rotations in the following way: if
a rotation R has unit vector ~n = (n1, n2, n3) as an axis and ω as a rotation
angle, then we represent R by:

~Q = (cos
ω

2
, n1 sin

ω

2
, n2 sin

ω

2
, n3 sin

ω

2
)

This association is not unique: substituting ω + 2π for ω, we see that − ~Q is
also a representation for R.

We’ll use Euler Angles to specify the relation between the COSPAR reference
frame and IAU EARTH. Given the longitude α and latitude β, we can easily
find that the rotation matrix R from IAU EARTH to COSPAR is given by:

R = [180]z[90 − β]y[α]z

, where all the angles are specified in degrees. It means that the IAU EARTH
can be converted in the COSPAR frame by first rotating αo about the z axis,
then 90o − βo9 about the y axis, and 180o again about z.

In spice, it has to be specified the transformation from the frame
we are defining to the RELATIVE one, in this case IAU EARTH.
Thus, Euler Angles to be specified in the kernel are those given by

R−1 = [−α]z[β − 90]y[180]z

9Note that the latitude angle for New Norcia has to be negative, since it is the latitude
of a point in the south hemisphere.
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The complete frame kernel is shown below:

\begindata

FRAME_COSPAR = 1400010

FRAME_1400010_NAME = ’COSPAR’

FRAME_1400010_CLASS = 4

FRAME_1400010_CENTER = 398990

FRAME_1400010_CLASS_ID = 1400010

TKFRAME_1400010_RELATIVE = ’IAU_EARTH’

TKFRAME_1400010_SPEC = ’ANGLES’

TKFRAME_1400010_ANGLES = ( -116.192, -121.05, 180 )

TKFRAME_1400010_AXES = ( 3, 2, 3 )

TKFRAME_1400010_UNITS = ’DEGREES’

\begintext

We tell SPICE that we are going to use Euler Angles to specify the frame
via the keyword SPEC. The keywords ANGLES specify the angles to be
rotated, while AXES define the axes, where 1 means x, 2 means y and 3
means z. Each value in the ANGLES set refers to the corresponding value
in the AXES one.

Finally, the units the angles are expressed in is specified.

In the next example we use the frame just created, to calculate the coordi-
nates of the center of the Earth in the COSPAR fame.
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#include <iostream>

using namespace std;

#include <SpiceUsr.h>

int main( char argc, char *argv[] ) {

// Load the necessary kernels

furnsh_c( "naif0008.tls" );

furnsh_c( "cospar.tf" );

furnsh_c( "new_norcia.bsp" );

furnsh_c( "earth_fixed.tf" );

furnsh_c( "de414.bsp" );

furnsh_c( "pck00008.tpc" );

// Convert to ET

SpiceDouble et;

utc2et_c( "2007-07-21T00:00:00", &et );

// Calculate the position of the center of the

// Earth in the COSPAR frame

SpiceDouble center[ 3 ];

SpiceDouble lt;

spkpos_c( "399", et, "COSPAR", "LT+S", "398990",

center, &lt );

cout << center[ 0 ] << ", " << center[ 1 ]

<< ", " << center[ 2 ] << endl;

return 0;

}

As expected, the resulting vector points along the −z axis. Note that two
SPK kernels have to be loaded.

• new norcia.bsp contains information about the position of the New
Norcia station with respect to the center of the earth.



Introduction to SPICE 51

• de414.bsp contains ephemeris for all the planets of the Solar System
and for the Moon, relative to the Solar System barycenter10.

Also, in order to make available the IAU EARTH reference frame to the
application, the kernels earth fixed.tf, pck00008.tpc and earth fixed.tf must
be loaded.

The function that gives the position of a body with respect to another is
spkpos c. In the example, we want to calculate the position of the center of
the Earth (NAIF ID 399) with respect to New Norcia (NAIF ID 398990), in
the COSPAR frame. We want the result to be corrected for light-time and
stellar aberration11. The function also returns the light-time between the
target and the observer.

10The barycenter of a system is the point about all its bodies rotate; we can talk about
the Solar System barycenter, the Earth-Moon barycenter, etc.

11See the NAIF tutorials for an explanation about these terms.
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Using SPICE.
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So far, we’ve seen a few examples of using SPICE that can be helpful to get
the feeling about how SPICE works and what can be done with it. This
chapter will introduce a few more examples of the SPICE usage.

53
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6.1 More on NAIF ID’s.

SPICE system kernel files and subroutines refer to ephemeris objects, refer-
ence frames, and instruments by integer codes.

An ephemeris object is any object that may have ephemeris or trajectory data
such as a planet, natural satellite, tracking station, spacecraft, barycenter,
asteroid or comet. Each body in the Solar System is associated with an
integer code for use with SPICE.

In theory, a unique integer can be assigned to each body in the Solar System,
including interplanetary spacecraft. SPICE uses integer codes instead of
names to refer to ephemeris bodies for three reasons:

1. Space. Integer codes are smaller than alphanumeric names.

2. Uniqueness. The names of some satellites conflict with the names of
some asteroids and comets. Also, some satellites are commonly referred
to by names other than those approved by IAU.

3. Context. The type of a body (barycenter, planet, satellite, comet, as-
teroid or spacecraft) and the system to which it belongs (Eart, Mars. . . )
can be recovered algorithmically from the integer code assigned to a
body. This is not generally true for names.

NAIF ID’s for natural bodies are positive, whereas for spacecraft are neg-
ative. Instrument mounted on spacecraft also have ID codes, determined
multiplying the spacecraft ID by 1000 and substracting the ordinal number
of the instrument from the resulting product. For example, the NAIF ID
for the Rosetta spacecraft is −226, and for the Osiris instrument onboard
Rosetta, −226110.

The Barycenters of the systems of the Solar System get the integers from 0
to 9, and 10 is the ID for the Sun (see table 6.1).

For each system, the main body ID is obtained by multiplying the barycenter
ID by 100 and adding 99, and the ID’s for the satellites by multipling the
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System NAIF ID

Solar System barycenter 0

Mercury barycenter 1

Venus barycenter 2

Earth barycenter 3

Mars barycenter 4

Jupiter barycenter 5

Saturn barycenter 6

Uranus barycenter 7

Neptune barycenter 8

Pluto barycenter 9

Table 6.1: NAIF ID’s for the Solar System barycenters.

barycenter ID by 100 and adding 1, 2, and so on. For example, the NAIF ID
for the Earth is 399 and for the Moon 301. The NAIF ID’s for the Jupiter
system are shown in table 6.2.
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System NAIF ID

Jupiter 599

Io 501

Europa 502

Ganymede 503

Callisto 504

Table 6.2: NAIF ID’s for Jupiter and its satellites.
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Two functions allow the programmer to convert NAIF ID’s to names and
vice-versa, as shown in the next example.

#include <iostream>

using namespace std;

#include <SpiceUsr.h>

int main( char argc, char *argv[] ) {

ConstSpiceInt SIZE = 100;

SpiceChar bodyname[ SIZE ];

SpiceInt id;

SpiceBoolean found;

cout << "Enter a Name: ";

cin >> bodyname;

// Get the NAIF ID for the given name

bodn2c_c( bodyname, &id, &found );

if ( found )

cout << "ID for " << bodyname << ": " << id << endl;

else

cout << "ID not found for " << bodyname << endl;

cout << "Enter an ID: ";

cin >> id;

// Get the name for the given ID

bodc2n_c( id, SIZE, bodyname, &found );

if ( found )

cout << "Name for " << id << ": " << bodyname << endl;

else

cout << "Name not found for " << id << endl;

return 0;

}
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6.2 More on SPICE kernels.

The reader might wonder how he can find out which kernels he needs for his
appliations. There is no straight answer for the question. Common sense
plays a key role, as well as experience.

Usually, SPK and CK kernels for spacecrafts don’t cover the whole mission1,
but only an interval of time that can be of days or weeks. So, if we need to
get an SPK kernel for an application, how to find out which one?

SPICE provides a comprehensive set of applications that help users and pro-
grammers to read comments and time coverage from the kernels, create ker-
nels and more. We’ll see in this section a few of them that will help us to
get information from binary kernels2.

6.2.1 brief.

brief is an utility program that shows the body and time coverage a SPK or
binary PCK kernel stores. To run brief, you just have to provide it with the
name of the kernel you are interested in:

$ brief [kernel_name]

In the figure 6.1, we can see the kind of information that we can obtain by
running brief: a list of the bodies for which there is information in the kernel,
and the time interval covered.

For a full list of parameters, run brief without arguments.

1This is particularly true for the ESA missions.
2For text kernels, information can be obtained by just opening them with a text editor.
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Figure 6.1: Running brief.

6.2.2 ckbrief.

ckbrief is the equivalent to brief for CK kernels. Since information in CK
kernels is stored as clock ticks, we have to provide ckbrief also with a valid
leapseconds kernel and with a valid clock for the spacecraft for which infor-
mation is stored in the file:

$ ckbrief [kernel_name] [sclk_kernel] [lsk_kernel]

For a full list of parameters, run ckbrief without arguments.

6.2.3 commnt

Usually, the creator of a binary kernel embeds in it a lot of information about
the kernel content and how it was created, that can be useful for the kernel
user.
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Figure 6.2: Running ckbrief.

commnt is an utility that allows to read and insert comments in a binary
kernel. If you run commnt without arguments, you’ll get a menu where you
can specify the action to perform. If you want to read directly the comments
from a file, run

$ commnt -r [kernel_name]

6.2.4 Getting SPICE kernels.

The location where to get the SPICE kernels for NASA missions is

ftp://naif.jpl.nasa.gov/pub/naif

For ESA missions, the kernels can be downloaded from

ftp://gorilla.estec.esa.int/pub/projects

Refer to the aareadme files in each directory to find out how they are orga-
nized and the conventions used to name and archive the kernels.
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Figure 6.3: Running commnt.

6.2.5 The generic kernel.

In all the examples of this introduction, the needed kernels are loaded one
by one. This has the drawback that if we find out that we need one more
kernel, for example, we have to recompile the application.

SPICE allows the user to define a generic text kernel where we specify all
the kernels to be loaded by the application. This way, should any change
need to be done to the list of kernels, the generic kernel is modified, without
needing to recompile the application.

A simple generic kernel would be:

\begindata

KERNELS_TO_LOAD = ( ’naif0008.tls’,

’mex_070605_step.tsc’,

’mex_v08.tf’ )

\begintext

The generic kernel can be loaded by an application by a call to furnsh c.
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When all the kernels are located in several directories, the kernel variables
PATH VALUES and PATH SYMBOLS help the user to save a lot of typing.
Imagine that, for an application, we need CK kernels located in

/usr/local/mex/kernels/ck

, and generic kernels in

/usr/local/SPICE/kernels/generic

We can construct the following generic kernel:

\begindata

PATH_VALUES = ( ’/usr/local/mex/kernels/ck’,

’/usr/local/SPICE/kernels/generic’ )

PATH_SYMBOLS = ( ’CK’,

’GENERIC’ )

KERNELS_TO_LOAD = ( ’$CK/atnm_p060401000000_00403.bc’,

’$CK/atnm_p030602191822_00135.bc’,

’$GENERIC/naif0008.tls’

’$GENERIC/earth_000101_070828_070607.bpc’ )

\begintext

Here, every PATH SYMBOL acts as an alias for the corresponding PATH VALUE.

6.3 Using SPICE.



Introduction to SPICE 63

Calculating the position of a body.

SPICE provides two functions to calculate the position and velocity of a body,
spkpos c and spkezr c. In the next examples we show how to use them.

#include <iostream>

using namespace std;

#include <SpiceUsr.h>

// Prints a vector on the console

void printVector( SpiceDouble *, int );

int main( char argc, char *argv[] ) {

// Load the needed kernels

furnsh_c( "naif0008.tls" );

furnsh_c( "de414.bsp" );

furnsh_c( "pck00008.tpc" );

// Calculate the position of the Moon

// with respect to the Earth in the IAU_EARTH

// frame for a given date

SpiceDouble et;

utc2et_c( "2007-08-01T00:00:00", &et );

SpiceDouble position[ 3 ];

SpiceDouble lt;

spkpos_c( "MOON", et, "IAU_EARTH", "LT+S",

"EARTH", position, &lt );

cout << "r = ";

printVector( position, 3 );

cout << endl;

// Calculate the state of the Moon with

//respect to the Earth in the IAU_EARTH frame

// for a given date

SpiceDouble state[ 6 ];
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spkezr_c( "MOON", et, "IAU_EARTH", "LT+S",

"EARTH", state, &lt );

cout << "s = ";

printVector( state, 6 );

cout << endl;

return 0;

}

void printVector( SpiceDouble *v, int n ) {

cout << "[ ";

for ( int i = 0 ; i < n - 1 ; i++ )

cout << v[ i ] << ", ";

cout << v[ n - 1 ] << " ]";

}

This example calculates the position and state of the Moon with respect to
the Earth for at a given time.

The printVector function just prints a vector on the console.

The program first loads the needed kernels, and then calculates the ET cor-
responding to 1st August, 2007 ad midnight. The function spkpos c receives
as parameters:

1. the target for which we want to calculate the position (the Moon),

2. the instant of time for which we are interested in the position of the
target,

3. the frame reference in which we want the position to be expressed
(IAU EARTH)3,

3Note that, should we use another frame, the coordinates of the vector position would
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4. the applied correction (LT+S),

5. the observer (Earth).

It gives back the postion and the one way light time between the observer
and the target.

spkezr c, instead, returns a 6-coordinate vector with the position (coordinates
1 to 3) and velocity of the body (coordinates 4 to 6). In the example above,
the first three coordinates of the state vector are indeed the position vector.

The units of the results are Km and Km/s.

The next example calculates the position of Mars with respect to Mars Ex-
press in the Mars Express reference frame. Note that for the application to
be able to use that frame, the corresponding kernel (mex v08.tf ) has to be
loaded. Also, since the location of the frame depends on the orientation and
position of the spacecraft, SPK and CK kernels with information about Mars
Express for the given date have to be loaded.

#include <iostream>

using namespace std;

#include <SpiceUsr.h>

// Prints a vector on the console

void printVector( SpiceDouble *, int );

int main( char argc, char *argv[] ) {

// Load the needed kernels

furnsh_c( "naif0008.tls" );

furnsh_c( "de414.bsp" );

furnsh_c( "ormm__070701000000_00403.bsp" );

furnsh_c( "atnm_p060401000000_00403.bc" );

furnsh_c( "mex_v08.tf" );

change, but its modulus (the distance from the Moon to the Earth) would remain the
same.
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furnsh_c( "mex_070605_step.tsc" );

SpiceDouble et;

utc2et_c( "2007-07-01T00:00:00", &et );

SpiceDouble position[ 3 ];

SpiceDouble lt;

// Calculate the position of the MARS with respect

// to MEX in the MEX frame for a given date

spkpos_c( "MARS", et, "MEX_SPACECRAFT",

"LT+S", "MEX", position, &lt );

cout << "r = ";

printVector( position, 3 );

cout << endl;

return 0;

}

void printVector( SpiceDouble *v, int n ) {

cout << "[ ";

for ( int i = 0 ; i < n - 1 ; i++ )

cout << v[ i ] << ", ";

cout << v[ n - 1 ] << " ]";

}

Calculating the field of view of a camera.

We’ll use for this example the superresolusion sensor (SRC) of HRSC (the
camera on board Mars Express), and the instrument kernels will be intro-
duced. This is a very simple example that gives the angular field of view of
the camera.
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#include <iostream>

using namespace std;

#include <SpiceUsr.h>

int main( char argc, char *argv[] ) {

// Load the MEX frame kernel

furnsh_c( "mex_v08.tf" );

// Load the HRSC instrument kernel

furnsh_c( "mex_hrsc_v03.ti" );

// Get the ID for the HRSC superresolution

// filter. It also can be found in the MEX

// frames kernel

SpiceInt hrsc_id;

SpiceBoolean found;

bodn2c_c( "MEX_HRSC_SRC", &hrsc_id, &found );

ConstSpiceInt SIZE = 100;

ConstSpiceInt MAX_VECTORS = 4;

SpiceChar shape[ SIZE ];

SpiceChar frame[ SIZE ];

SpiceDouble bsight[ 3 ];

SpiceDouble bounds[ MAX_VECTORS ][ 3 ];

SpiceInt n;

// Get the field fo view for HRSC

getfov_c( hrsc_id, MAX_VECTORS, SIZE, SIZE,

shape, frame, bsight, &n, bounds );

cout << "Shape of the field of view: " <<

shape << endl;

cout << "Reference frame: " <<

frame << endl;

SpiceDouble angles[ 4 ];

// Compute the angles between one of the

// corner vectors and the boresight
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angles[ 0 ] = vsep_c( bsight, bounds[ 0 ] )

* dpr_c();

cout << endl << "Angle with the boresight: "

<< angles[ 0 ] << " degrees" << endl;

cout << endl << "Angle with the other corners: "

<< endl;

// Compute the angles between one of the corner

// vectors and the others

for ( int i = 1 ; i < n ; i++ ) {

angles[ i ] = vsep_c( bounds[ i ], bounds[ 0 ] )

* dpr_c();

cout << "\t" << angles[ i ] << " degrees" << endl;

}

return 0;

}

The shape of the field of view can be rectangular, polygonal, circular or
elliptical. The field of view for the SRC sensor is a rectangle, as indicated in
the figure 6.4, where the boresight and the angles beween one of the corners
and the other three are represented.

The function that calculates the field of view is getfov c. It returns the shape
of the field of view, the frame in where the f.o.v. vectors and the boresight
are represented, the boresight, and as many vectors as needed to represent
the f.o.v.4

Then the angles between the first returned vector and the boresight and the
other 3 (a, b, and c in the figure 6.4) are calculated by calling to the function
vsep̧, which returns angles in radians. dpr c returns the amounts of degrees
per radian.

44 in this case, since the f.o.v. for SRC is rectangle.
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Figure 6.4: Rectangular field of view.

In the figure 6.5 can be seen that two of the angles are equal, whereas the
other is twice as big as the angle between the first vector and the boresight,
as it is expected.

Getting the coordinates of an image.

Let’s imagine we have an image of Mars, and we want to calculate its coor-
dinates. We’ll see how to do it in the next example.

#include <iostream>

using namespace std;

#include <SpiceUsr.h>

int main( char argc, char *argv[] ) {

// Load the needed kernels

furnsh_c( "naif0008.tls" );
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Figure 6.5: Running the field of view example.

furnsh_c( "de414.bsp" );

furnsh_c( "ormm__041101000000_00100.bsp" );

furnsh_c( "atnm_p030602191822_00135.bc" );

furnsh_c( "mex_v08.tf" );

furnsh_c( "mex_070605_step.tsc" );

furnsh_c( "pck00008.tpc" );

furnsh_c( "mex_v08.tf" );

furnsh_c( "mex_hrsc_v03.ti" );

SpiceDouble et;

// Calculate the ET when the image was taken

utc2et_c( "2004-11-12T04:43:11.594", &et );

// Get the ID for the HRSC GREEN filter. It also can

// be found in the MEX frames kernel

SpiceInt hrsc_id;

SpiceBoolean found;

bodn2c_c( "MEX_HRSC_GREEN", &hrsc_id, &found );

SpiceDouble mex_pos[ 3 ];
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SpiceDouble lt;

// Get the position of MEX with respect to Mars in the

// the IAU_MARS frame

spkpos_c( "MEX", et, "IAU_MARS", "LT+S", "MARS",

mex_pos, &lt );

ConstSpiceInt SIZE = 100;

ConstSpiceInt MAX_VECTORS = 4;

SpiceChar shape[ SIZE ];

SpiceChar frame[ SIZE ];

SpiceDouble bsight[ 3 ];

SpiceDouble bounds[ MAX_VECTORS ][ 3 ];

SpiceInt n;

// Get the field fo view for HRSC

getfov_c( hrsc_id, MAX_VECTORS, SIZE, SIZE, shape,

frame, bsight, &n, bounds );

SpiceDouble rotation[ 3 ][ 3 ];

// Calculate a transformation matrix from the frame

// returned by getfov_c to IAU_MARS

pxform_c( frame, "IAU_MARS", et, rotation );

SpiceInt mars_id;

// Calculate the NAIF ID for Mars

bodn2c_c( "MARS", &mars_id, &found );

SpiceDouble mars_r[ 3 ];

SpiceInt dim;

// Calculate the radii of Mars

bodvcd_c( mars_id, "RADII", 3, &dim, mars_r );

SpiceDouble bs_mars[ 3 ];

// Rotate the boresight to the IAU_MARS frame

mxv_c( rotation, bsight, bs_mars );

SpiceDouble surface_point[ 3 ];

// Calculate the intersection of the boresight with
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// the Mars surface

surfpt_c( mex_pos, bs_mars, mars_r[ 0 ], mars_r[ 1 ],

mars_r[ 2 ], surface_point, &found );

if ( found == SPICEFALSE ) {

cout << "The vector doesn’t intersect the Mars surface"

<< endl;

return 0;

}

SpiceDouble latitude;

SpiceDouble longitude;

SpiceDouble r;

// Convert the rectangular coordinates to latitude and

// longitude

reclat_c( surface_point, &r, &longitude, &latitude );

// Translate to degrees

longitude *= dpr_c();

latitude *= dpr_c();

cout << "Longitude: " << longitude << " degrees" << endl;

cout << "Latitude: " << latitude << " degrees" << endl;

return 0;

}

In the figure 6.6 the position of MEX with respect to Mars and the boresight
of SRC are represented.

We’ll assume that we have an image, and we found out, by inspecting its
PDS label, that it was taken at 2004-11-12T04:43:11.594 UTC. For the sake
of simplicity, we’ll calculate the coordinates of the boresight, although a more
exhaustive work would calculate the coordinates of the four corner points.
The boresight is returned by a call to getfov c. In order to get its coordinates
in the MARS IAU frame, we first have to calculate a transformation matrix
for the given instant of time, and then multiply the matrix by the boresight
vector. The call to surfpt c returns the intersection of the boresight (in the
MARS IAU) frame with the Mars surface. Previously, the radii of Mars has
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Figure 6.6: The coordinates of an image in Mars.

to be obtained by a call to bodvcd c5. surfpt c takes as parameters a vector
(r in the figure 6.6), that defines the origin of the intersecting vector, the
vector (the boresight), and the 3 values for the radii of the body; it returns
the coordinates of the surface point where the given vector and the body
surface intersect.

The call to reclat c converts the coordinates of the surface point to longitude
and latitude.

5Note that Mars is modelled as an ellipsoid. Therefore, the call to the function will
return 3 values for the radius of Mars.
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