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Eccentric Motion

@ Eccentricity = e
@ Pericenter at a(l-e)

@ Apocenter at a(l+e)

@ Radial (“epicyclic”)
frequency = K
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Eccentric Motion

@ Eccentricity = e
@ Pericenter at a(l-e)
@ Apocenter at a(l+e)

@ Radial (“epicyclic”)
frequency = K

@ Longitude of pericenter
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Epicyclic Motion:

Eccentric Motion viewed in a Rotating Frame
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Epicyclic Motion:

Eccentric Motion viewed in a Rotating Frame
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Three Frequencies

® Mean motion n
@ n® = GMp/a’

@ Epicyclic frequency K
@ K? = GMp/a?®

@ Vertical frequency Vv

@ V¢ = GMp/a?
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Three Frequencies

@ Mean motion n 1
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@ Epicyclic frequency K
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@ Vertical frequency v
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Three Different Frequencies

3

= 6Mp/a® 1 + 3 TA(Z)? - B T(F) ... ]
= GMp/a® [1 - 3 TN + 2T L) .. ]
9

= GMp/a’ [I+EJ2( - )2 ——J( )4 ]

@ J2, J4, ... are the "gravitational moments”.
® J2 can be ~ 1%.
@ Terms matter less as semimajor axis increases.

@ K<nNn<KWV.



K < n: Pericenter Precession

@ Epicyclic period T = 2m/Kk.

@ Moon advances nT (> 2m).

@ Pericenter w advances
nT - 2m

® Precession rate:

dawW=n-21/T=n-K.
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K < n: Pericenter Precession

@ Epicyclic period T = 2m/Kk.

@ Moon advances nT (> 2m).

@ Pericenter w advances
nT - 2m

® Precession rate:

dawW=n-21/T=n-K.

@ Similarly, n < v leads to nodal regression at a rate:

Q=n-v



Kepler Shear

@ All frequencies are functions of semimajor axis a.
@ "Nearby” features do not stay nearby for long.
o Lifetime of a clump of length A6 and width Aa:
AO/An = 2/3 P [AB/21] [a/Ad]
= A Saturn feature 1 km X 1° in size at 100,000
km is only = 1 year old.
= Clumps in planetary rings must be either

young or confined.







Transient Structures in Saturns F Ring
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Transient Structures in Saturns F Ring
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Transient Structures in Saturns F Ring
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Transient Structures in Saturns F Ring
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Transient Structures in Saturns F Ring
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Transient Structures in Saturns F Ring
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Transient Structures in Saturns F Ring
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A Confined Arc in Saturns G Ring




Other Types of Shear

e n, K and v are all similar in magnitude.

@ Typical periods ~ 10 hours in rings.

@ Precession rate w and regression rate Q are much
slower.

@ Typical periods are ~ 100 days.

@ Shearing rates for pericenters and nodes are
correspondingly much slower.
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Vertical "Ripples”
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o Closeupﬁ"éassini images show a regular, = 30 Km
wavelengji‘F\‘-._

@ In 1995, Hubble occultation data showed the same
feature but vx?i:rl_h a ~ 60 km wavelength.

@ In Cassini imaglléé'-, It continues to wind fighter at a

rate exactly consisfent with dQ/dr.

@ Playing the proces"s1"backwards, something warped

the ring in early 19$II1_+.




Ring-Moon Interactions
@ Moon
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Ring-Moon Interactions
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Gravitational Deflection

@ Ring particle is deflected by moons gravity

@ Epicycles form:

N\M a
@ er = 2.24 —
4 Mp |lam-arl

(Julian & Toomre, 1966)

@ Formula valid for a small moon and a nearby ring




Gravitational Deflection
‘ 280

a

P AD -

@ Period T = 211/Kg

& AO =T Inr-nm| = 21 An/n = 31 Aa/a

@ Wavelength = a AB =| 31 Aa
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Real-World Example:
The Encke Gap and the Discovery of Pan
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@ “Eyeball” analysis of a photographic print.

- by Jeff Cuzzi, Phoenix Airport, 1985.
@ Discovery of a wavy edge.
@ Implies that there is a moon in the Encke Gap!

@ Wavelength = 1500 km implies that the moon is
~ 150 km away, near the middle of the gap.

@ Amplitude = 5 km implies moon is ~ 10 km in radius.



Outer edge: —) |3TCA8/

_ Inner edge:
NrR > N

@ A wavy edge should lead the moon on the inner
edge; trail it on the outer.

@ Collisions may damp the pattern with increasing
distance from the moon.
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Moonlet Wakes
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@ Ripples start in phase at the moons longitude.

c
o
o

@ Wavelength A varies with Aa: A = 31 Aa. oE

o

@ Ripples go out of phase downstream from moon.

@ This produces a spiral pattern.
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@ This produces a spiral pattern.




Voyager's
occultation
profile
revealed
an opacity
variation {
interior to
the |
Encke Gap |

Voyager Photopolarimeter
Occultation Profile



@ The same pattern makes the star dim
periodically during an occultation!

@ The spiral winds fighter with distance
downstream from the moon.

@ Therefore, analysis of the wake pattern
revealed the exact orbit of the moon.

@ A computer-aided search selected the
Voyager images that captured “Pan.’




@ The same pattern makes the star dim
periodically during an occultation!

@ The spiral winds fighter with distance
downstream from the moon.

@ Therefore, analysis of the wake pattern
revealed the exact orbit of the moon.

@ A computer-aided search selected the
Voyager images that captured “Pan.’







Pans wake as seen by Cassini




The Encke Gap edge as
now seen by Cassini...







Degees Dowhstrealn fToln Moon




Prometheus produces a “wake” pattern much like Pan




Gravitational Deflection

Top View,
Frame Rotating with Moon (nw)
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Gravitational Deflection

Question: What if AB = 2n/p for integer p?
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Gravitational Deflection
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Gravitational Deflection

Question: What if AB = 2n/p for integer p?
Answer: Resonance!

Top View,
Frame Rotating with Moon (nw)




Lindblad Resonances
(P

« AD = ZTT/P Fis

@ Epicyclic period of ring particle T = 21/k.
@ In this period, the moon shifts T |nr-nul = 2m/p.

p Inr-nml = Kr

® Can be written in other forms.




Lindblad Resonances

@ Vertical resonances are perfectly analogous:
P Inr-nml = Vi
@ These can lead to ..
@ Sharp ring edges.

@ Gaps.

@ Density and bending waves.




Mimas 2:1 Resonance

@ Confines the B Ring

@ Opens the Cassini Division




Atlas 7:6 Resonance

@ Confines the A Ring







Ring-Moon Interactions #2

Moon

Top View,
Frame Rotating with Ring (nr)
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Ring-Moon Interactions #2

Moon

Top View,
Frame Rotating with Ring (nr)
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Orbital Energy Exchange

Moon

T e e

Force Force

before \

«— Velocity

Ring

® Force x Distance = Work.

® Work before encounter cancels work after.

@ With no net change in energy, semimajor
axis is conserved.

P ke e LTI TR e e



Orbital Energy Exchange

Moon

befo;e \
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.
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.
-------

————a = Velorily

@ Work after encounter is larger than work before.

@ Net work is negative, so semimajor axis decreases
and mean motion increases.

@ Ring bodies no longer have the same mean motion.

P ke e LTI TR e e



.Back to the F Ring...




Pandora Perturbs the Ring




Pandora Perturbs the Ring




Pandora and Prometheus:

"Shepherds” or "Wolves”?




Orbital Energy Exchange

Moon




Orbital Energy Exchange

Moon




Orbital Energy Exchange

Moon

Questions: What if AB = 2n/p for integer p?
What if perturbation is smaller?
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Corotation Resonances

Moon

Ring

Questions: What if AB = 2n/p for integer p?
What if perturbation is smaller?
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Corotation Resonances

Moon

Questions: What if AB = 2n/p for integer p?

What if perturbation is smaller?
Answer: Stable Resonant Confinement!

P ke e LTI TR e e



Corotation Resonances

@ Epicyclic period of moon T = 21/ Km.

@ In this period, the ring shifts T |ng-nml = 211/p.

P InrR-nml = Km

@ Compare to Lindblad: p Inr-nml = Kr



Corotation Resonances

@ Vertical resonances are almost perfectly
analogous:

p Inr-nml = vm/2
@ Why the difference?

@ An inclined moon has two close
approaches per orbit rather than one!

® These can lead to ...

@ Confinement of clumps and arcs.




An Arc in Saturns G Ring




An Arc in Saturns G Ring
...confined by the Mimas 7:6 CER




- Nepfune's Ring-Arcs
Confined by the 43:42 CIR with Galatea

N




Nepfunes Ring- Arcs
Confined by the 43; 42 CIR wn‘h Gala’rea

@ Except...
@ it's not really at the resonant or/bif'.

@ arcs cross the corotation boundaries wheref
material is unstable.

2
@ the leading twe darcs have almost vanished now.

@ ..more work is needed.

e ————————

--




What is "Shepherding™?




"Traditional™ Shepherding
@

@ Particle approaches with er = 0.

@ Particle departs with er > O.
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"Traditional™ Shepherding

@ Particle approaches with er = 0.

@ Particle departs with er > O.

@ If er is damped before the next passage,
then conservation laws require Aa to
increase very slightly.
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Case #l: Overlapping Resonances




indblad Resonances
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.. Case #3: Gravitational Stirring

.

_.Metis"“‘s'hé'p.hercls” inner edge




.. Case #3: Gravitational Stirring
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Case #4: None of the Above?




