Hohimann Transier

1) At the initial orbit

v R
P

1) At the final orbit:

AV; VolJ(R/:O)H\/(R%J

Generalized to include the circular-

elliptic transfer, the elliptic-elliptic-co-

axial and out-of-plane transfers
Analytical proof in Barrar (1963)

AV




The Bi-ellintic Transiex

A A first impulse AV, is applied in the initial orbit that
makes the spacecraft goes to na elliptic orbit with
periapsis Ry and apoapsis R (R > Ry);

B.When the spacecraft is at the apoapsis, a second impulse
AV is applied when the spacecraft is at the periapsis to
circularize the orbit;

C.A third impulse is applied to circularize the orbit.

* R¢/ Rg= 55 (Earth-Moon)

* Bi-Parabolic is the limit




Gieneral Planar Transier
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Bi-Impulsive Transfer, can be extended to 3-D.




Patched Gonic

The patched conic method divede the trajectories in two parts:

1. The first leg neglects the effect of the Moon and any method (Holmann, bi-elliptic, etc.) can
be used to transfer the spacecraft to an orbit that crosses the Moon’s path;

2. When the spacecraft reaches a position where the Moon’s gravity field dominates its

motion, the Earth’s effects are neglected and orbit is studied as a Keplerian lunar orbit.




Dnuons o Dynamics Aot

Dynamics:

at0eS and Optimization Methods

* Two-Body Problem
* Two-Body Perturbed Problem
* Three-body Problem (in particular the restricted version of this problem)

* N-Bodies Problem

Actuators (control):

* Impulsive system (AV)

* Continuous system

Optimization methods:

* Direct methods (search of parameters that minimizes a certain objective function)
* Indirect method (first-order necessary conditions are used)

* Hybrid approach (first-order necessary conditions are written and transformed in a search of parameters)



TRANSFERS BETUEEN
TWO Co-AKIAL ELLIPTIC ORBIT
(USING 2 OR 3 IMPULSES) CASE 1: ALIGNED ORBITS

* Optimal solution is hohmann type (impulse applied at the apsis);

* The best two-impulse transfer is the one that uses the most distant apsis (H,);
* TRIy is better than TRI,;

* Best H vs Best TRI depends on the initial and final orbits;

H.: To apoapsis

Hy: To periapsis TRI;: To apoapsis

TRI,: To periapsis



*

TRANSFERS BETWIEEN TII0 GO-AMIAL ELLIRTIG ORBITS

(USING 2 OR 3 IMPULSES) CASE 2: OPPOSITE ORBITS

Optimal solution is hohmann type (impulse applied at the apsis);

The best two-impulse transfer is the one that uses the most distant apsis (H,);
TRI; x TRI, depends on the initial and final orbits;

Best H vs Best TRI depends on the initial and final orbits;

H.: To apoapsis TRI: To periapsis
H,: To periapsis TRI,: To apoapsis



*

TRANSEERS GIRGULAR - ELLIPTIC ORBITS

(USING 2 OR 3 IMPULSES)

There are two choices for each type of transfer (using 2 or 3 impulses);
H, is better than Hy;
TRI; is better and faster then TRI,;

H, x TRI, depends on the initial and final orbits.

H.: To apoapsis

H,: To periapsis TRI;: To periapsis

TRI,: To apoapsis



EQUATIONS TO MINIMIZE TOTAL AV

AV,; = (Dk, — Dk, )Sin(8,) — (D;h, — Dsh,)Cos(6, )

AVu = D1 — Do + (lel — Doko)Cos(el) + (Dlhl - DohO)Sin(el)
AV,, = (D,k, — Dk, )Sin(6,) - (D,h, — D;h,)Cos(6,)

AV,, = D, — D, +(D,k, — D,k,)Cos(6,) + (D,h, — D;h,)Sin(6,)

g, = Dj(1+k,Cos(6,) + h,Sin(6,)) - D;(1+ k,Cos(6,) + h,Sin(6, )) = 0
g, = D3(1+k,Cos(6,) + h,Sin(6, )) - D}(1+ k,Cos(6,) + h,Sin(6,)) = 0

k, = —Csc(6, — ez)mg—?j(u k,Cos(6,) + h,Sin(6,)) - 1jSin(92)—...

1

...—((B—a(u k,Cos(0,) + h,Sin(6,)) - 1J5in(el)]




@Space Trajectories

We show space trajectories from one body back to the same body

and to the Lagrangian points.

The mathematical model is the restricted three-body problem.
Earth-Sun and the Earth-Moon.

Five families of transfer orbits are found.



The problem of sending a spacecraft from the Earth to the

Lagrangian points L4 and L5 Is treated.

Two transfer orbits from the Earth to L4 and to L5 are found.

Numerical integration Is extended beyond the points and it is
found, the spacecraft passes near the Lagrangian points L3, L4 and

L5 and comes back to the neighborhood of the Earth.



In general, the orbits found here can be applied to:

» Transfers between any two points in the group formed by the

Earth and the Lagrangian points L3, L4, L5 with near-zero AV;

*

~ Make a tour to the Lagrangian points for reconnaissance

purposes with near-zero AV for the entire tour;

*

« Builld a cycler transportation system linking all the points

Involved or only two of them.



@The Three-Body Lambert’s Problem

This problem can be formulated as:

"Find an orbit (in the three-body context) that makes a spacecraft

to leave a given point A and goes to another given point B".

The problem becomes the Lambert's three-body problem:



"Find an orbit (in the three-body problem context) that makes a
spacecraft to leave a given point A and go to another given point B,
arriving there after a specified time of flight". By varying the time

of flight, it is possible to find a family of orbits.



The Solution of the TPBVP

The following steps are used:

« Guess a Initial velocity vi, so together with the position ri, the

Initial state 1s known;

5

« Guess a final regularized time tf and integrate the regularized

equations of motion from t0 = 0 until f;



» Check the final position T obtained with the prescribed final

position and the final real time with the specified time of flight.

If there is an agreement the solution is found. Not, an increment in

the initial guessed velocity vi and In the guessed final regularized

time tf IS made and the process goes back to step 1).



@ Trajectories from the Moon to the Moon
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@ Trajectories from the Moon to the Moon
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INPE

Transfer Orbits with Minimum AV

The two-body solution is used as the first guess and a trial and
error technique (in the initial velocity) is used to find the solution.

The AV for escape velocity from the Earth is 0.3735 canonical units.

The AV found In this transfer orbit 1s 0.3839 canonical units.
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Transfer Orbit with Minimum AV from the Earth Back to the Earth, as Seen in the Rotating Frame.



Data for the transfer orbit with minimum A4V from the Earth back
to the Earth

Position and velocity in the | x = 0.999997
rotating frame in canonical |y =-0.000043
units when leaving the |« = 0.096957

Earth g =-0.371500
AV = 0.383944
Jacobi constant J =-1.495886

Regularized transfer time | Tr = 56.049850
Canonical transfer time | T¢ =25.094343
Transfer time inyears | Ty = 3.993889
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Transfers Earth-lagrangian points: results

The "SHORT-5-4" Orbit
» A shorter time Is required. Total tour is about 13 years. The legs

connecting L4 and L5 to the Earth has about 2.1 years each;

« It also has closer approaches to the Lagrangian points visited,
compared to the "LONG" transfers;

~ After the first close approach this orbit continues In the same
direction. The second trajectory is similar to the first one. There
are 12 "crossing points"”, candidates for a one-burn maneuver

which transfers the spacecraft between the trajectories. After this



maneuver the spacecraft starts again Its journey to L5, L3, L4 and
the Earth
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@The "LONG-4-5" Orbit

« It has the closest approach with the Earth at the end of the first
revolution;

+ Very close approaches to the Lagrangian points and the Earth again
exist In at least two more revolutions, with no nominal corrections
required. It makes this orbit the best one for a continuous cycler without
nominal corrections;

+ This orbit has the characteristic of reversing the direction of its motion

after some of the "swing-by".
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INPE
@The "SHORT-4-5" Orbit

« After the first close approach the spacecraft starts a new tour in the
reverse order. The first five revolutions have alternating directions of
motion;

« It has the shortest transfer time (in the first revolution) of all orbits
described. The period for an Earth-to-Earth trip iIs about 11 years and
the legs connecting the Earth and the Lagrangian points L4 and L5 last
about 1.8 years each way;

+ It has the closest approaches to the Lagrangian points visited (during the

first and second revolutions).
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A Cycler Transportation System Between the Earth
and the Lagrangian Points L4 and L5

This "swing-by" can be used to build a cycler transportation system
between the Earth and L5. If the spacecraft starts at L5 with zero velocity,
It is possible to apply an impulse of 0.0274 (816 m/s) to get Vx =-0.0271
and Vy = 0.0040. So, the spacecraft follows one trajectory that is part of
the SHORT-4-5. Then, it goes to the Earth, makes the "swing-by" and
returns to L5, arriving there with Vx = -0.0018, Vy = 0.0263. Then, 1t is
possible to apply an impulse AV = 0.0337 (1003.8 m/s), such that its
velocity goes to Vx = -0.0271, Vy = 0.0040 again and it starts the cycler

one more time.



0.20
t =0 | The spacecraft leaves L5 from rest (as seen in !
_ ) _ SUN EARTH
the rotating frame) with an impulse of AV = 0.00 A
0.0274 (816 m/s) i f
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1.80 |swing-by to reverse the sense of motion and it .0.40 -
years |starts going back to L5 !
-0.60 - / /
t =|The spacecraft arrives at L5. A new impulse of i
7.62 |AV =0.0377 (1003.8 m/s) is applied to send it -0.80
years |back to the Earth and to start the cycler again i | L5 | | |
10800 020 040 060 080 1.00 120




INPE

To reproduce this cycler system for the Lagrangian point L4
we can use the mirror image theorem. The time-line for a complete
cycler is:

t=0 The spacecraft leaves L4 from rest (as seen in the rotating frame) with an
impulse of AV =0.0274 (816 m/s)

t=5.82 The spacecraft arrives at the Earth, makes a swing-by to reverse the sense
years of motion and it starts going back to L4
t=7.62 The spacecraft arrives at L4. A new impulse of AV =0.0377 (1003.8 m/s) is

years applied to send it back to the Earth and to start the cycler again
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@The "LONG-5-4" Orbit

« This 1s the orbit with smaller residual velocity during the close
approaches with the Lagrangian points;

« After completing the first revolution, the spacecraft makes a
"swing-by" with the Earth, changes its direction of motion (as seen
In the rotating frame) from "clock-wise" to "counter-clock-wise"
and goes back to pass near L4, L3, L5 and the Earth, in a second

revolution.
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An Option for a Faster Cycler Transportation System
Between the Earth and L5 or L4

The spacecraft leaves L4 (by applying an impulse such that Vx =
26.8 m/s and Vy = 47.7 m/s, goes to the Earth, and returns to L4
with the impulse given by the Earth's swing-by. Next, an extra
Impulse Is applied, to make a fine adjustment that allows M3 to
arrive at L4. Then, after M3 arrives at L4, it is necessary to apply
another impulse to reverse its motion and send it back to the Earth,

following the same trajectory it did in the first revolution.



The spacecraft leaves L4
from rest (as seen in the
rotating frame) with an
impulse of AV = 56.6 m/s

t =4.07 years

The spacecraft arrives at
the Earth, makes a
"swing-by"  with  the
Earth to reverse the sense
of motion and it starts
going back to L4

t = 5.33 years

An extra maneuver with
AV = 0.02 (560 m/s) is
performed to adjust the
final arrival at L4

t=5.86
years

The spacecraft arrives at
L4. A new impulse with
AV = 0.05 (1500 m/s) is
applied to send it back to
the Earth and to start the
cycler again
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The result is a trajectory that requires 4.0728 years for the Earth-
oound trip, 1.7825 years for the L4-bound trip and about 2060 m/s
per revolution in maneuvers. It is a little more expensive than the
orevious system (2060 x 1820 m/s), but it is faster (5.86 x 7.62

years).



INPE

A similar system can be build between the Earth and L5 by
using the mirror image theorem. Note that the mirror image of the
legs for an Earth-bound trip in now a L5-bound trip and the mirror

Image of the L4-bound leg is now the Earth-bound leg.

t=0 The spacecraft leaves L5 from rest (as seen in the rotating frame) with an
Impulse of AV =56.6 m/s

t=0.53 An extra maneuver with AV = 0.02 (560 m/s) is performed to adjust the final
years arrival at the Earth

t=1.79 The spacecraft arrives at the Earth, makes a "swing-by" with the Earth to
years reverse the sense of motion and it starts going back to L5

t=5.86 The spacecraft arrives at L5. A new impulse with AV = 0.05 (1500 m/s) is
years applied to send it back to the Earth and to start the cycler again
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INPE
Position, Velocity and Time for the passages by the Lagrangian points in

Canonical Units (referred to the Rotating frame)

Orbit "SHORT-5-4"
Point X y R V, V, \Y t
Earth - - 0.0000 | 0.3737 | 0.3737 0.00
Ls 0.5007 | -0.8696 | 0.0037 | 0.0103 | 0.0198 | 0.0223 | 13.30
L, -1.0026 | 0.0088 | 0.0092 | 0.0085 | -0.0205 | 0.0222 | 40.61
L, 0.5086 | 0.8671 | 0.0087 | -0.0043 | 0.0230 | 0.0234 | 68.38
Earth | 1.0054 | 0.0000 | 0.0054 | 0.0161 | 0.0373 | 0.0406 | 82.00
Orbit "LONG-5-4"
- - - 0.0000 | 0.3729 | 0.3729 0.00
Ls 0.5223 | -0.8666 | 0.0223 | -0.0017 | -0.0167 | 0.0168 | 26.64
L, -1.0272 | 0.0000 | 0.0272 | -0.0066 | 0.0440 | 0.0449 | 80.07
L, 0.5011 | 0.8732 | 0.0073 | 0.0009 | 0.0016 | 0.0019 | 130.75
Earth | 1.0000 | 0.0050 | 0.0050 | -0.0315 | -0.0085 | 0.0326 | 156.34
Orbit "SHORT-4-5"
- - - 0.0000 | -0.3740 | 0.3740 0.00
L, 0.5004 | 0.8635 | 0.0025 | 0.0240 | -0.0112 | 0.0264 | 11.39
L, -0.9981 | -0.0025 | 0.0031 | 0.0006 | 0.0265 | 0.0266 | 34.47
Ls 0.4985 | -0.8617 | 0.0046 | -0.0271 | 0.0040 | 0.0274 | 57.79
Earth | 0.9999 | -0.0008 | 0.0008 | 0.0773 | -0.0452 | 0.0895 | 69.11
Orbit "LONG-4-5"
- - - 0.0000 | -0.3727 | 0.3727 0.00
L, 0.4929 | 0.8547 | 0.0133 | -0.0099 | 0.0127 | 0.0161 | 29.46
L, -0.9652 | -0.0004 | 0.0348 | -0.0018 | -0.0587 | 0.0588 | 87.74
Ls 0.4868 | -0.8518 | 0.0191 | 0.0172 | 0.0226 | 0.0284 | 146.35
Earth | 0.9999 | -0.0000 | 0.0000 | 0.8086 | -3.4852 | 3.5778 | 174.94




INPE

Conclusions

Trajectories in the planar restricted three-body problem with
near-zero AV to move a spacecraft between any two points on the
group formed by the Earth and the Lagrangian points L3, L4, L5 in
the Earth-Sun system are found.

It i1s shown how to apply these results to build a cycler

transportation system to link all the points in this group.



It i1s also shown how to use one or more "swing-by" with the
Earth to build a cycler transportation system between the Earth and
the Lagrangian points L4 and L5, with small AV required for

maneuvers in nominal operation.



History of Swing-By (Comets)

& Jean le Rond d’Alembert (1773): “On the Orbit of the Comets™
and “On the Pertubations of the comets”.

Laplace (1795): “Mécanique Céleste”.

U. G. Leverrier (1847): “Comptes Rendu”.

H. A. Newton (1878): “On the Origin of Comets”.

F. Tisserand (1889): “Tisserand Criterion”.

M. O. Callandreau (1892): “Theory of Periodic Comets”.

E. Stromgren and collaborators (1914).

G. V. Pirquet (1928): “Space Trajectories”.

E. Everhart, S. Yabushita, M. Valtonen (last 30 years).
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History of Swing-By (Astronautics)

M. Minovitch (1961): “A Method for Determining Interplanetary
Free-Fall Reconnaissance Trajectories”.

G. Flandro (1966): “Fast Reconnaissance Missions to the Outer
Solar System Utilizing Energy Derived From the Gravitational
Field of Jupiter”.

Farquhar, Muhonen, Church, Dunham, Davis, Efron, Yeomans
and Schanzle (1985).

E. A. Belbruno and J. K. Miller (1987 to present)




Aplications of Swing-By

Inner Solar System: Use of Venus for trips to Mars.

Tour to the Outer Solar System (Voyager).

Multiple Swing-By (Earth, Venus, etc) to reach the Outer Solar
System.

Plane Change (Ulysses) to leave the ecliptic.

Use of the Moon to escape from Earth.

Use of the Moon to keep geometry.

Tour to the Satellites of Jupiter or Saturn.

O
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TWO BODY MODEL

= We assume planar motion
= Three parameters describe the Swing-by:

R, = Periapse distance

V.. = Hyperbolic Excess Velocity or J (Jacobian constant)
or V,, (Periapsis velocity)

v = Angle of approach (y Is also the angle between v, and V)

Rotating System




= Patched Conics for first approximation
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THE SWING-BY MANEUVER AND SOME VARIABLES






THE SWING-BY MANEUVER AND SOME VARIABLES

V, = Inertial velocity of Jupiter

<l

»_ = Velocity with respect to Jupiter before Swing-by

V,, = Velocity with respect to Jupiter after Swing-by
I, = periapse distance

Y = angle of approach

o = half of the deflexion angle






VECTORIAL ADDITION

Vi = Inertial velocity before Swing-By

Vo = Inertial velocity after Swing-By

V, = Inertial velocity of Jupiter

V... = Velocity with respect to Jupiter before Swing-By
V.. + = Velocity with respect to Jupiter after Swing-By

|:Voo—+ 2
V,=V_ +V,
AV =V, —V 1

| Sin(8) =

So, |AV|=2 |V, |Sin (5). where £1+ rpvi]



Use of Venus for Trps o bl

1 Earth departure
2 Venus swingby
. 3 Mars arrivel
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3/1/2017 Earnth Departure Unpowered Seingby Trajectory
From Scott, S. A. and Braun, R. D., 1991.
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Plane change (ULYSSES) to leave the ecliptic




Use of the Moon to keep geometry

PERIGEE = 5.9 Re
APOGEE-1 =86 Rg

OR%\-\ APOGEE-2 =~ 141 R
?\
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L
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& et

PERILUNE RADIUS AT SWINBYS =27.664 Km

Sun-Synchronous periodic orbit using double lunar swing-by, [1,1,1] class.
From Farguhar and Dunham, 1980.



INTRODUCTION

The ballistic gravitational capture is a characteristic of some

dynamical systems.

A spacecraft change from a hyperbolic orbit into an elliptic orbit
with a small negative energy without the use of any propulsive

system.

The force responsible is the gravitational force of the third body
Involved in the dynamics. So, this force Is used as a zero cost control,

equivalent to a continuous thrust applied in the spacecraft.

1



TRAJECTORIES TO THE MOON

0.04
0.00
— Moon }
-0.04
>‘ | /
-0.08
012 ) /Sphere of
e / Influence
-0.16 |

-0.10 0.00 0.10 0.20 0.30
X



MATHEMATICAL MODEL (RPTB)

The canonical system of units and the rotating frame are used.

Equations of motion are:

><-2y—aQ
OX
Y+ 2X = 0<2

ay



where Q is the pseudo-potential given by

. _;( 2+y) (1r1“) 2

The Jacobian constant Is:

J:Z(l_“):zua(l

2 2
W +prs -V
Il I’




APPROACH TO STUDY THIS PROBLEM

We study the two-body energy of the -Moon:

C3=V2—2u/l’

From Cs we know If the orbit is elliptic (C3 < 0), parabolic (Cs =

0) or hyperbolic (Cs; > 0) with respect to the Moon.

For spacecrafts approaching the Moon, it is possible to use the

gravitational force of the Earth to lower the value of Ca.



The search for trajectories arriving at the Moon with the

maximum possible value for the reduction of Cs Is very important.

Usually, a numerical approach of verifying the values of Cs is
used to identify trajectories. If there is a change of sign in Cz from
negative to positive when leaving the Moon, it means that a ballistic

gravitational capture occurs in the positive sense of time.



GRAVITATIONAL CAPTURE

Sphere of
Influence

To Earth



STRATEGY TO FIND TRAJECTORIES

The spacecraft starts its motion close to the Moon and a negative

time step is used to determine its motion before the closest approach.
The final conditions were converted into the initial conditions.

A trajectory Is considered a ballistic gravitational capture when
the distance from the Moon reaches 100,000 km in a time less than

50 days.



FORCES INVOLVED IN THE DYNAMICS

Gravitational force of the Earth The centrifugal force




EXAMPLE OF TRAJECTORY

The curves are:

1: Gravitational radial force;

. Gravitational transversal force;

. Centripetal radial force;

. Centripetal transversal force;

. Resultant radial force;

. Resultant transversal force;

. Gravitational force in the direction of motion;
. Centripetal force in the direction of motion;

. Resultant force in the direction of motion.

O© 00 N O O & WO DN
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EXAMPLE OF TRAJECTORY
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Trajectory with C3 =-0.2 and a = 0°
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EXAMPLE OF TRAJECTORY
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EXAMPLE OF TRAJECTORY
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EXAMPLE OF TRANSFER
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Uranus and Satellites from Voyager 2
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Neplune from Voyager 2




Saturn from Voyager 1




Saturn from Voyager 1
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Jupiter from Voyager
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Solar System from Voyager
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