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ABSTRACT
Granular materials of different sizes are present on the surface of several atmosphere-
less Solar System bodies. The phenomena related to granular materials have been
studied in the framework of the discipline called Granular Physics; that has been
studied experimentally in the laboratory and, in the last decades, by performing nu-
merical simulations. The Discrete Element Method simulates the mechanical behavior
of a media formed by a set of particles which interact through their contact points.

The difficulty in reproducing vacuum and low-gravity environments makes numer-
ical simulations the most promising technique in the study of granular media under
these conditions.

In this work, relevant processes in minor bodies of the Solar System are studied
using the Discrete Element Method. Results of simulations of size segregation in low-
gravity environments in the cases of the asteroids Eros and Itokawa are presented. The
segregation of particles with different densities was analysed, in particular, the case of
comet P/Hartley 2. The surface shaking in these different gravity environments could
produce the ejection of particles from the surface at very low relative velocities. The
shaking causing the above processes is due to: impacts, explosions like the release of
energy by the liberation of internal stresses or the re accommodation of material. Sim-
ulations of the passage of impact-induced seismic waves through a granular medium
were also performed.

We present several applications of the Discrete Element Methods for the study of
the physical evolution of agglomerates of rocks under low-gravity environments.

Key words: minor planets, asteroids: general – comets: general – methods: numerical

1 INTRODUCTION

Granular materials of different sizes are present on the sur-
face of several atmosphere-less Solar System bodies. The
presence of very fine particles on the surface of the Moon, the
so-called regolith, was confirmed by the Apollo astronauts.
From polarimetric observations and phase angle curves, it
is possible to indirectly infer the presence of fine particles
on the surface of asteroids and planetary satellites. More re-
cently, the visit of spacecraft to several asteroids and comets
has provided us with close pictures of the surface, where par-
ticles of a wide size range from cm to hundreds of meters
have been directly observed. The presence of even finer par-
ticles on the visited bodies can also be inferred from image
analysis.

It has been proposed that several typical processes of
granular materials, such as the size segregation of boulders
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on Itokawa, the displacement of boulders on Eros, among
others (see e.g. Asphaug (2007) and references therein), can
explain some features observed on the surfaces of these bod-
ies. The conditions at the surface and the interior of these
small Solar System bodies are very different compared to
the conditions on the Earth’s surface. Below we point out
some of these differences:

• while on the Earth’s surface the acceleration of gravity
is 9.8 m/s2 with minor variations, on the surface of elon-
gated km-size asteroid is on the order of 10−2 to 10−4 m/s2,
with typical variations of a factor of 2

• the presence of an atmosphere or any other fluid media
plays an important role on the evolution of grains, partic-
ularly in the small ones (Pak et al. (1995)). Under vacuum
conditions in space, this effect does not occur.

• In vacuum and low gravity conditions, other forces
might play a role comparable to that of gravity, e.g. van der
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Waals forces (Scheeres (2010)), although these forces are not
considered in our present approach.

The phenomena related to granular material have been
studied in the discipline called Granular Physics. Granular
media are formed by a set of macroscopic objects (grains)
which interact through temporal or permanent contacts.
The range of materials studied by Granular Physics is very
broad: rocks, sands, talc, natural and artificial powders,
pills, etc.

Granular materials show a variety of behaviours under
different circumstances: when excited (fluidised), they often
resemble a liquid, as is the case of grains flowing through
pipes; or they may behave like a solid, like in a dune or a
heap of sand.

These processes have been studied experimentally in
the laboratory, and, in the last decades, by numerical anal-
ysis. The numerical simulation of the evolution of granular
materials has been done recently with the Discrete Element
Method (DEM). DEM is a family of numerical methods for
computing the motion of a large number of particles such as
molecules or grains under given physical laws. DEMs simu-
late the mechanical behavior in a media formed by a set of
particles which interact through their contact points.

Low-gravity environments in space are difficult to re-
produce in a ground-based laboratory; especially if one is
interested in keeping a stable value of the acceleration of
gravity on the order of 10−2 to 10−4 m/s2 for several hours,
since under these low-gravity conditions the dynamical pro-
cesses are much slower than on Earth. Parabolic flights are
not suitable for these experiments, since it is not possible
to attain a stable value during the free-fall flight. For labo-
ratory experiments, we are then left with experiences to be
carried on board space stations.

Therefore, numerical simulation is the most promising
technique to study the phenomena affecting granular mate-
rial in vacuum and low-gravity environments.

The rest of the article is organised as follows. In Section
2 we describe the implementation of the Discrete Element
Methods used in our simulations. In Section 3 we present
the results of simulations of the process of size segregation
in low-gravity environments, the so-called Brazil nut effect,
in the cases of Eros, Itokawa and P/Hartley 2. In Section 4,
the segregation of particles with different densities is anal-
ysed, with the application to the case of P/Hartley 2. The
surface shaking in these different gravity environments could
produce the ejection of particles from the surface at very low
relative velocities; this issue is discussed in Section 5. The
shaking that causes the above processes is due to impacts
or explosions like the release of energy by the liberation of
internal stresses or the re accommodation of material. Al-
though DEM methods are not suitable to reproduce the im-
pact event, we are able to make simulations of the passage
of impact-induced seismic waves through a granular media;
these experiments are shown in Section 6. The conclusions
and the applications of these results are discussed in Section
7.

2 DISCRETE ELEMENT METHODS

DEM are a set of numerical calculations based on statisti-
cal mechanic methods. This technique is used to describe

the movements of a large amount of particles which are sub-
jected to certain physical interactions.

DEMs present the following basic properties that gen-
erally define this class of numerical algorithms:

• The quantities are calculated at points fixed to the ma-
terial. DEM is a case of a Lagrangian numerical method.

• The particles can move independently or they can have
bounds, and they interact in the contact zones through dif-
ferent types of physical laws.

• Each particle is considered a rigid body, subject to the
laws of rigid body mechanics.

The forces acting on a particle are calculated from the in-
teraction of this particle with its nearest neighbors, i.e. the
particles it touches. Several types of forces are usually con-
sidered in the literature; e.g free elastic forces, bonded elastic
forces, frictional forces, viscoelastic forces, interaction of the
particles with other objects, such as walls and mesh objects
acting as boundary conditions, global force fields (i.e. grav-
ity), velocity dependent damping, etc.

The main drawback of the method is the computational
cost of computing the interacting forces for each particle at
each time step. A simple all-to-all approach would require to
perform O(N(N − 1)/2) operations per time step, where N
is the number of particles in the simulation. Several efficient
methods to reduce the number of pairs to compute have
been implemented; e.g. the Verlet lists method, the link cells
algorithm, and the lattice algorithm. Another problem for
the simulation is the length of the time step, which should
be much less than the duration of the collisions, typically
1/10 to 1/20 of collisions duration. Based on the Hertzian
elastic contact theory, the duration of contact (τ) can be
expressed as:

τ = 5.84

(
ρ(1− ν2)

E

)0.4

rv−0.2 (1)

(Wada et al. (2006), after Timoshenko and Goodier
(1970)), where ρ is the grain density, nu is the Poisson ratio,
E is the material strength, r is the radius of the particle, and
v is the collisional velocity.

In Figure 1 we plot the previous estimate of the dura-
tion of collision as a function of the collisional velocity for
particles with r = 0.1, 1 and 10 m. The other parameters
are assumed as follows: ρ = 2000 gr/cm3, ν = 0.17, and
E = 100 Gpa. We are interested in the processes that oc-
cur on the surface of the small Solar System bodies, where
the interactions among the boulders occur at velocities com-
parable to the escape velocity on their surface. The upper
x-axis indicates the radius of the body, while the lower one
shows the corresponding escape velocity (assuming a con-
stant density of ρ = 3000 gr/cm3). For km-size asteroids
and m-size boulders, the collisions typically last for a few
10−3s, therefore, the time step required to correctly simu-
late the collision would be ∼ 10−4s.

2.1 Viscolelastic spheres with friction

The contact force between two spherical particles can be de-
composed in two vectors (Figure 2): the normal force, along
the direction that joins the centres of the interacting par-
ticles; and the tangential force, perpendicular to this line.
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Figure 1. Estimate of the duration of collision as a function of

the collisional velocity for particles of r = 0.1, 1 and 10 m

.

Figure 2. Scheme of the contact forces between two spherical
particles

Naming i and j the two interacting particles, the total force−→
Fij can then be expressed as:

−→
Fij =

{ −→
Fnij +

−→
F tij if ψij > 0
0 otherwise

(2)

where
−→
Fnij is the normal force and

−→
F tij the tangential

one. ψij is the deformation given by:

ψij = Ri +Rj − |−→ri −−→rj | (3)

where Ri and Rj are the radius of the particle i and j,
respectively, and −→ri and −→rj are the position vectors.

Several models have been used for the normal and tan-
gential forces in the literature. Among the most used ones
is the damped dash-pot, also known as the Kelvin-Voigt
model. Instead of using this model in our simulation, we use
an extension of an elastic-spheres one developed by Hertz
(1882), since it is a more realistic representation of two col-
liding particles.

The normal interaction force between two elastic
spheres Fn;elij was inferred by Hertz as a function of the
deformation ψ:

Fn;el =
2Y

√
Reff

3(1− ν2)
ψ3/2 (4)

where Y is the Young modulus and ν is the Poisson
ratio. The effective radius Reff is given by the expression:

1

Reff
=

1

Ri
+

1

Rj
(5)

A viscoelastic interaction between the particles can be
modelled by including a dissipation factor in eq. 4. The vis-
coelastic normal forces Fn;ve then become:

Fn;ve =
2Y

√
Reff

3(1− ν2)

(
ψ3/2 +A

√
ψ
dψ

dt

)
(6)

where A is a dissipative constant and dψ/dt is the time
derivative of the deformation.

Considering the previous expression for the normal force
could lead to unrealistic results, since it does not take into
account the fact that the particles do not overlap, but they
become deformed (Pöschel and Schwager (2005)). During
the compression phase and most of the decompression phase,
the term

(
ψ3/2 +A

√
ψ dψ
dt

)
in eq. 6 is positive, leading to a

repulsive (positive) normal force. However, at a certain stage
of the decompression, the deformation ψ could still be pos-
itive, but the second term could be negative, which would
lead to a negative (attractive) force. This is an unrealistic
situation, since there are no attractive forces during the col-
lision of two particles. The problem arises when the centres
of the particles separate too fast from one another to allow
their surfaces to keep in touch while recovering their shape.
In order to overcome this problem, for the condition ψ > 0
in eq. 2, we use the following expression for the normal force:

Fn;ve = max

{
0,

2Y
√
Reff

3(1− ν2)

(
ψ3/2 +A

√
ψ
dψ

dt

)}
(7)

Following the model by Cundall and Strak (1979) for
the tangential force (F t), when two particles first touch,
a shear spring is created at the contact point. The static
friction is then modelled as a spring acting in a direction
tangential to the contact plane. The particles start sliding
with the shear spring resisting the motion. When the shear
force exceeds the normal force multiplied by the friction co-
efficient, dynamic sliding starts. We limit the shear force by
Coulomb’s friction law; i.e. |F t 6 µFn;ve|. The expression
for the tangential force then becomes:

F t = −sign(vtrel) min{∥κς∥ , µ∥Fn;ve∥} (8)

where the first term inside the curly brackets corre-
sponds to the static friction, and the second one is the dy-
namic friction. κ is a constant, ς is the elongation of the
spring, and µ is the dynamic friction parameter.

2.2 ESyS-particle

For the DEM simulations we developed a version
of the ESyS-particle package (Abe et al. (2004);
https://launchpad.net/esys-particle) adapted to our needs.
ESyS-particle is an Open Source software for particle-based
numerical modeling, designed for execution on parallel su-
percomputers, clusters or multi-core computers running a
Linux-based operating system. The C++ simulation en-
gine implements a spatial domain decomposition for par-
allel programming via the Message Passing Interface (MPI).
A Python wrapper API provides flexibility in the design of
numerical models, specification of modeling parameters and
contact logic, and analysis of simulation data.

The separation of the pre-processing, simulation and
post-processing tools facilitates the ESyS-particle develop-
ment and maintenance. The setup of the model geometry is
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given by scripts, since the whole package is script driven (no
interactive GUI is provided by ESyS).

The particles can be either rotational or non-rotational
spheres. The material properties of the simulated solids can
be elastic, viscoelastic, brittle or frictional. Particles can
be bonded to other particles in order to simulate break-
able material. It is possible to implement triangular meshes
for specifying boundary conditions and walls. The package
also includes a variety of particle-particle and particle-wall
interaction laws; such as linear elastic repulsion between un-
bounded contacting particles, linear elastic bonds between
bonded particle pairs, non-rotational and rotational fric-
tional interactions between unbounded particles, rotational
bonds implementing torsion and bending stiffness and nor-
mal and shear stiffness. Boundary conditions and walls can
move according to pre-defined laws.

The DEM implementation in ESyS-particle employs the
explicit integration approach, i.e. the calculation of the state
of the model at a given time only considers data from the
state of the model at earlier times. Although the explicit
approach requires shorter time steps, it is easier to develop a
parallel version for execution in high performance computing
infrastructures.

ESyS-particle has shown good scaling performance
when using additional computing elements (processor cores),
if at least ∼ 5000 particles are processed by each core. Oth-
erwise, when a lower number of particles is handled by each
core, the impact of the overhead by the communications be-
tween processes reduces the computational efficiency of the
application. As long as the problem size is scaled with the
number of cores, the scalability is close to linear. Therefore,
large amounts of particles, typically a few million, are pos-
sible to model.

For the analysis of the results, ESyS-particle can for-
mat the output to be used in 3D visualisation platforms like
VTK and POV-Ray. In particular, we use the software Par-
aview, based on VTK and developed by Kitware Inc. and
Sandia National Labs (EEUU), which offers good quality in
3D graphics and allows us to implement several visualisation
filters to the data.

ESyS-particle has been employed to simulate earth-
quake nucleation, comminution in shear cells, silo flow, rock
fragmentation, and fault gouge evolution, to name but a few
applications. Just to give a few references, we mention ex-
amples in fracture mechanics (Schopfer et al. (2009)), fault
mechanics (Abe and Mair (2005), Mair and Abe (2008)),
and fault rupture propagation (Abe et al. (2006)).

For our simulations, we have implemented the Hertzian
viscoelastic interaction model with and without friction into
the ESyS-particle package, according to the eqs. 7 and 8.
Several modifications were necessary to implement either in
the C++ code as well as in the Python interface (Heredia
and Richeri (2009)).

2.3 Tests

In order to test the code and to set the values of the rele-
vant physical and simulation parameters, we choose a few
problems for which there exists an analytical solution or we
can compare the output with experiments.

2.3.1 Test case 1: a direct collision of two equal spheres

We consider the case of two equal viscoelastic spheres: one
starts at rest and the other one approaches from the nega-
tive x-direction at a given speed along the line joining the
particle centres. Friction is not considered, since the colli-
sion between the particles is normal. The aim of this test is
to study the viscoelastic collision.

The coefficient of restitution can be used to characterise
the change of relative velocity of inelastically colliding parti-
cles. Let us note −→v1 and −→v2 the velocities before the collision

of particles 1 and 2, respectively; and
−→
v′1 and

−→
v′2 the veloc-

ities immediately after. When the relative velocity is along
the line joining the particle centres, we note v = |−→v2 − −→v1 |
and v′ = |

−→
v′2 −

−→
v′1 |. The coefficient of restitution ϵ is then

calculated as:

ϵ =
v′

v
(9)

In general, this coefficient depends not only on the im-
pact velocity, but also on material properties.

Because of their deformation, particles lose contact
slightly before the distance of the centres between the
spheres reaches the sum of the radii. Schwager and Pöschel
(2008) present an analytical estimate of the coefficient of
restitution which takes into account this fact. The computa-
tion of ϵ is then presented as a divergent series of the dimen-
sionless parameter βv1/5, where β = γκ−3/5; γ = 3

2
ρA
meff

;

κ = δ
meff

; δ = 2Y

3(1−ν2)
√

(Reff

; 1
Reff

= 1
Ri

+ 1
Rj

; and

1
meff

= 1
mi

+ 1
mj

. The material parameters Y , ν and A

are defined above. R1, R2, m1, m2 are the radius and mass
of particle 1 and 2, respectively.

We run simulations of two colliding particles with the
following combination of parameters: Y = {109, 1010} Pa,
A = {10−4, 10−3} s−1, ν = 0.3; for a set of initial relative
velocities v = {0.1, 0.5, 1, 5, 10} m/s. The particles have a
radii of 1m and a density of 3000 kg/m3. The time step of
the integration is 10−5 s.

The coefficient of restitution for the numerical simula-
tions is presented in Figure 3a as a function of βv1/5. The
symbols correspond to different combinations of parameters:
circle – Y = 109, A = 10−4; down triangle – Y = 109,
A = 10−3; square – Y = 1010, A = 10−4; up triangle –
Y = 1010, A = 10−3 (Y in Pa and A in s−1). The analyt-
ical estimates are computed with Maple’s codes presented
in Schwager and Pöschel (2008), where the expansions are
up to 40th order. The ratio between the numerical and an-
alytical estimate is presented in Figure 3b. We find a good
agreement between the two estimates up to values of βv1/5

closer to 1. The discrepancy is due to the cut-off of the higher
terms.

Several laboratory experiments have been conducted to
estimate the coefficient of restitution of rock materials (see
e.g. Imre et al. (2008), Durda et al. (2011)). For impact
velocities in the range 1 − 2 m/s, values of ϵ ∼ 0.8 − 0.9
have been obtained. Looking back at Figure 3a, we observe
that this range of values of ϵ are obtained for the following
set of material parameters: Y = 1010 Pa, A = 10−3 s−1,
ν = 0.3. Therefore, we will choose these parameter values
for our numerical simulations of colliding rocky spheres.
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Figure 3. a) The coefficient of restitution for the numerical sim-
ulations of the collision of two viscoelastic spheres as a function of

βv1/5. The symbols correspond to different combinations of pa-
rameters: circle – Y = 109, A = 10−4; down triangle – Y = 109,
A = 10−3; square – Y = 1010, A = 10−4; up triangle – Y = 1010,
A = 10−3 (Y in Pa and A in s−1). b) The ratio between the

numerical and analytical estimate.

2.3.2 Test case 2: a grazing collision between two spheres

In this case we consider two equal viscoelastic spheres: one
starts at rest and the other one approaches from the negative
x-direction at a given speed; but, in contrast to the previ-
ous case, the distance between the y-values of the particles
centres is slightly less than the sum of the radius. We then
have a grazing collision. The aim of this test is to compare
the results of the viscoelastic interaction with and without
friction. We run simulations of two colliding particles with
the following set of parameters: Y = 1010 Pa, A = 10−3 s−1,
ν = 0.3, R1 = R2 = 1 m, and a density of ρ = 3000 kg/m3.
The friction parameters of eq. 8 are chosen as: κ = 0.4,
µ = 0.6. The distance between the centres in the y-direction
is (0.999R1 +R2). We run simulations where particle 2 has
initial velocities of v = {10−3, 0.01, 0.1, 1, 10} m/s.

In Figure 4 we plot the ratio between the modulus of
the particles relative velocity after exiting and before the
interaction, as a function of the initial velocity. The star
symbols correspond to the simulations without the friction
interaction and the cross symbols to the ones with it. Due
to the fact that the collision is almost grazing, the ratios
are almost 1 for the simulations without friction, regardless
of the initial velocity. For simulations with friction, as it is
expected, the ratio decreases as the initial velocity decreases,
because the friction interaction becomes more relevant for
low velocities.

2.3.3 Test case 3: a bouncing ball

In ESyS-particle the interaction between a particle and a
mesh wall can be linear, elastic or a linear elastic bond.
Viscoelastic and frictional interactions of particles and walls
are not yet implemented. Therefore, in order to simulate
a frictional viscoelastic collision of a ball against a fixed
wall, we have to glue balls to the wall with a linear elastic
bond. The following test case consists on a free-falling ball
impacting on an equal size ball that is bonded to the floor.
The objective of this experiment is to test different time
steps for the simulations.

We use the following set of parameters: Y = 1010 Pa,
A = 10−3 s−1, ν = 0.3, R1 = R2 = 1 m, and a density of
ρ = 3000 kg/m3. The bonded particle has an elastic bond
with a modulus K = 109 Pa. Particle 2 falls from a height of
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Figure 5. a) The distance of the falling particle respect to the
edge of the resting one (centre height minus 3R) as a function

of time. b) The ratio of the previous values to the one for the
smallest time step at each time.

2.75m. In the first set of simulations we assume the Earth’s
surface gravity (g = 9.81 m/s2). For this set, we use the
following time steps in the simulations: dt = {6× 10−4, 5×
10−4, 10−4, 10−5, 10−6, 5× 10−7} s.

The duration of the collisions is computed from the sim-
ulations as the interval of time while the deformation param-
eter defined in eq. 3 is greater than 0. As mentioned above
this interval is slightly larger than the time the balls are in
contact, but it is good enough for the purpose of having an
order of magnitude estimate of it. For the previous set of
parameters, the duration of the collision is ∼ 0.003 s.

In Figure 5a, we plot the distance of the falling par-
ticle respect to the edge of the resting one (centre height
minus 3R) as a function of time. In Figure 5b, we plot the
ratio of the previous values to the one for the smallest time
step at each time. We find that for time steps dt 6 10−5 s,
there is a very good agreement between the simulations. For
longer time steps the bouncing ball presents an implausible
behavior.

The coefficient of restitution can be computed as the
ratio between the velocity at the iteration step just after
the collision and at the step just before the collision (just
after and before the deformation defined in eq. 3 is ψ < 0).
For time steps dt 6 10−5 s there is a good agreement among
the different estimates. We obtained a value of 0.593.
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Therefore, for the previous set of parameters, we will
use a time step of dt = 10−5 s for the simulations with
Earth’s gravity, since the collision is covered with ∼30 time
steps and it is a good compromise between quality of the
results and a longer time step.

In another set of simulations we use very low surface
gravity, similar to the one found on the surface of aster-
oid Itokawa and comet P/Hartley 2; i.e. a rocky object of
∼ 500 m in diameter or an icy object of ∼ 1 km in di-
ameter. For this set, we use the following time steps in the
simulations: dt = {5 × 10−4, 10−4, 10−5, 10−6} s. For the
previous set of parameters, the duration of the collision is
∼ 0.01 s. For time steps dt 6 10−4 s there is a good agree-
ment among the different runs. The coefficient of restitution
in these simulations is 0.721. For the simulations in this low-
gravity environments we will use a time step dt = 10−4 s,
which corresponds to a collision lasting ∼ 100 time steps.

2.3.4 Test case 4: Newton’s cradle

A Newton’s cradle is a device used to demonstrate the con-
servation of linear momentum and energy via a series of
swinging hard spheres. When one ball at the end is lifted
and released, it knocks a second ball and this one the next
until the last ball in the line is pushed upward. A typical
Newton’s cradle consists of a series of identically sized metal
balls hanging by equal length strings from a metal frame so
that they are just touching each other at rest.

We simulate the Newton’s cradle with four spheres
aligned in the x-axis. We number the particles from right
to left: #1 being the particle at the right extreme and #4
the one at the left extreme. The x-axis increases to the right.
Particle #1 has a negative initial velocity vx = −10 m/s.
Two types of simulation are run: Hertzian elastic and vis-
coelastic spheres. We use the following set of parameters:
Y = 1010 Pa, A = 10−3 s−1, ν = 0.3 (for the viscoelastic
simulation). The radius of the spheres are R = 1 m, and a
density of ρ = 3000 kg/m3.

In Figure 6 we present the time evolution of the fol-
lowing parameters for each simulation: i) x-position of each
particle (#1 to #4); ii) x-velocity for each particle; iii)
relative change of x-total momentum: (Momentum(t) −
Momentum(t = 0))/Momentum(t = 0); iv) relative change
of total kinetic energy: (K.E(t)−K.E.(t = 0))/K.E.(t = 0).
Figure 6 a) corresponds to the Herztian elastic (HE) simu-
lation, and Figure 6 b) to the Herztian viscoelastic (HVE)
one.

Note that for the HE simulation particle #4 acquires
almost the velocity of the initial impacting particle and lit-
tle rebound is observed in the particles #1 to #3. The linear
momentum is conserved after the collision up to a relative
precision < 10−12, and the kinetic energy after the rebound
is conserved up to a relative precision of 10−11. In the HVE
simulation, the particle #4 acquires 70% of the velocity of
the initial impacting particle, and particle #3 acquires 25%.
No rebound is observed and all the particles move to the
left. The final velocities increase from right to left. The lin-
ear momentum is also conserved after the collision up to a
relative precision < 10−12 (down to the last output digit).
The kinetic energy after the rebound is not conserved ∼ 50%
of the initial kinetic energy is spent on the damping of the
viscosity interaction.
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Figure 6. a) Results of the Herztian elastic (HE) simulations of

the Newton’s cradle: i) x-position of each particle (#1 to #4); ii)
x-velocity for each particle; iii) relative change of x-total momen-
tum; iv) relative change of the total kinetic energy. b) Similar set

of plots for the Herztian viscoelastic (HVE) simulations of the
Newton’s cradle.

3 SIZE SEGREGATION IN LOW-GRAVITY
ENVIRONMENTS: THE BRAZIL NUT
EFFECT

3.1 The shaking or knocking procedure

Consider a recipient with one large ball on the bottom and a
number of smaller ones on top of it. All the balls have similar
densities. After shaking the recipient for a while, the large
ball rises to the top and the small ones sink to the bottom
(Rosato et al. (1987), Knight et al. (1993), Kudrolli (2004)).
This is the so called Brazil nut effect (BNE), because it can
be easily seen when one mixes nuts of different sizes in a can;
the large Brazil nuts rise to the top of the can. Unless there
is a large difference in the density of the balls, a mixture of
different particles will segregate by size when shaken.
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Figure 7. The floor is vertically displaced at a certain speed

(vfloor) for a short interval (dtshake), according to a staircase-
like function.

The BNE has been attributed to the following processes
(Hong et al. (2001)): i) the percolation effect, where the
smaller ones pass through the holes created by the larger
ones (Jullien and Meakin (1992)); ii) geometrical reorganisa-
tion, through which small particles readily fill small openings
below the large particles (Rosato et al. (1987)); iii) global
convection which brings the large particles up but does not
allow for reentry in the downstream (Knight et al. (1993));
iv) due to its larger kinetic energy, the large particle still fol-
lows a ballistic upraise, penetrating by inertia into the bed
(Nahmad-Molinari et al. (2003)).

While size ratio is a dominant factor, particle-specific
properties such as density, inelasticity and friction can also
play important roles.

Williams (1963) performed a model experiment with a
single large particle (intruder) and a set of smaller beads
inside a rectangular container. When the container was vi-
brated appropriately, the intruder would always rise and
reach a height in the bed that depends on vibration strength.

In order to simulate this effect under different gravity
conditions, we run simulations of a 3D box with many small
particles and one big particle at the bottom, the so-called
intruder model system (Williams (1963), Kudrolli (2004)).
On the floor we glue one row of small particles with a linear
elastic bond. The box is subjected to a given surface gravity.

We run simulations under several gravity conditions:
the surface of the Earth, Moon, Ceres, Eros and a very-low
gravity environment like the surface of asteroid Itokawa or
comet P/Hartley 2. The parameters for the simulations are
summarised in Table 1. The physical and elastic parameters
of the particles are similar to the ones used in the previous
tests: Y = 1010 Pa, A = 10−3 s−1, ν = 0.3, κ = 0.4, µ = 0.6,
K = 109 Pa, ρ = 3000 kg/m3.

The floor is vertically displaced at a certain speed
(vfloor) for a short interval (dtshake), according to a
staircase-like function like the one presented in Fig 7. The
process is repeated every given number of seconds (∆trep),
depending on the settling time given by the surface gravity.
We have chosen this vibration scheme instead of the fre-
quently used sinusoidal oscillation of the floor, because we
are interested in the effects of a sudden shock coming from
below. This shock could arise from the translation of the im-
pulse generated by an impact in a far region. We refer this
vibration scheme as a shaking or knocking procedure.

In order to prepare the initial conditions for the simu-

lations of the BNE, we run a set of simulations where the
particles start at a certain height over the surface and they
free fall. The floor is slightly shaken at the beginning of
these preliminary simulations in order to obtain a random
settling of the particles. After finishing the shaking and let-
ting the particles settle down, we use the positions at the
end of the runs as the initial conditions for the set of BNE
simulations. We must run different preliminary simulations
for each gravity environment.

In the BNE simulations, the floor’s velocity is linearly
increased from 0 up to the final value vfloor, which is reached
after 20 jumps. We note that the shaking procedure is pa-
rameterized with the floor’s velocity.

The 3D box is constructed with elastic mesh walls. The
box has a base of 6 × 6 m and a height of 150 m. A set of
12×12 m small balls of radius R1 = 0.25 m are glued to the
floor. The big ball has a radius R2 = 0.75m, and on top of it,
there are 1000 small balls with a normal distribution of radii
(mean radius R1 = 0.25 m, standard deviation σ = 0.01 m).
We use the same box for all the simulations.

The size range of the balls are selected in correspon-
dence with the boulders size observed on the surface of as-
teroid Itokawa and Eros.

3.2 Earth

We run simulations with the following set of floor veloci-
ties: vfloor = {0.3, 1, 3, 5, 10} m/s. Snapshots at start and
after 100 shakes (100 sec. of simulated time) are presented
in Figure 8. The snapshots correspond to the simulation
with floor’s velocity vfloor = 5 m/s. In the supplementary
material we include movies with the complete simulation
(movie1 with all the spheres drawn and movie2 with the
small spheres erased).

In Figure 9 we present the evolution of the big ball’s
height as a function of the number of shakes for the differ-
ent floor velocities. The thick black line marks the height
of a box enclosing the 1000 small particles with a random
close packing. Random close packing has a maximum poros-
ity of P = 0.64 (Jaeger and Nagel (1992)). The volume
of the enclosing box is calculated as the sum of the vol-
ume of the 1000 small particles divided by the porosity; i.e.:
V = 1000( 4/3

p
iR3

1)/P = 102 m3. For a box with a 6 × 6 m
base, we obtain a height of the enclosing box of 2.84 m. The
thick black line is drawn at this height.

For the two lowest velocities (vfloor = {0.3, 1} m/s)
the big ball stays at the bottom, for the two largest ones
(vfloor = {5, 10} m/s) it rises to the top, and for the inter-
mediate one (vfloor = 3 m/s) it starts rising but does not
reach the top at the end of the simulation.

When the floor’s displacement velocity is below ∼
3 m/s, the Brazil nut effect does not occur. Above this
threshold, the time required by the big ball to reach the top
decreases for increasing floor velocities. Note that there is
a sharp decrease in the rising time for small changes in the
floor’s velocity (from 3 to 5 m/s). For large displacement
velocities, the balls on the top, including the big one that
is 27 times more massive than the small ones, can be lifted
at considerable heights, as it is seen in the large excursions
made by the big ball for vfloor = 10 m/s.
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Table 1. Parameters for the simulations of the BNE under different gravity environments.

Parameter Earth Moon Ceres Eros Low-gravity
Itokawa &

P/Hartley 2

Surface gravity g (m/s2) 9.81 1.62 0.27 5.9× 10−3 10−4

Escape velocity vesc (m/s) 11.2× 103 2.38× 103 510 10 0.17

Floor’s velocity vfloor (m/s) 0.3 - 10 0.1 - 3 0.03 - 1 0.01 - 0.3 0.003 - 0.1
Duration of displacement dtshake (s) 0.1 0.1 0.1 0.1 0.1
Time between displacements ∆rep (s) 2 5 5 15 15

Figure 8. Snapshots at start and after 50 shakes (100 sec. of sim-
ulated time) for the simulation under Earth’s gravity. The snap-
shots correspond to the simulation with floor’s velocity vfloor =

5 m/s. See the movies in the supplementary material.
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gravity environments: a) Moon; b) Ceres; c) Eros; d) Itokawa.
The legends correspond to the floor velocities (vfloor).

3.3 Comparison with other gravity environments

Similar simulations were run for other gravity environments,
like the surface of the Moon, Ceres, Eros and a very-low
gravity environment like the surface of asteroid Itokawa
or comet P/Hartley 2. The simulation parameters are pre-
sented in Table 1.

For the simulation under the very-low gravity environ-
ment, we present a movie of 4500 sec. of simulated time
(300 shakes) in the supplementary material. The movie cor-
responds to the simulation with floor’s velocity vfloor =
0.05 m/s (movie3 with all the spheres drawn and movie4
with the small spheres erased).

Figure 10 presents the evolution of the big ball’s height
as a function of the number of shakes for the different floor
velocities and the different gravity environments: a) Moon,
b) Ceres, c) Eros, d) Itokawa.

As in the cases of the simulations in Earth’s gravity, in
all the different gravity environments we can find a thresh-
old for the floor’s velocity, below which the Brazil nut effect
does not occur. From the previous plots, we get a rough es-
timate of these thresholds. In Figure 11 we plot the velocity
thresholds as a function of the surface gravity in a log-log
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for the largest objects are out of the plots.

scale. A straight line in the log-log space is a good fit to the
data points:

log10 vthre [ m/s] = 0.42 log10 g
[
m/s2

]
+ 0.05 (10)

We conclude that the Brazil nut effect is effective in a
wide range of gravity environments, expanding 5 orders of
magnitude on surface gravity.

In Figure 11, we plot the escape velocity for the given
surface gravity. Note that the floor’s velocity thresholds ap-
proach the escape velocity for the low gravity environments.
For example, in the case of Itokawa, the escape velocity is
vesc = 0.17 m/s, while the estimated floor’s velocity thresh-
old is vfloor = 0.015 m/s. This point is revisited in Section
5.

4 DENSITY SEGREGATION IN
LOW-GRAVITY ENVIRONMENTS

As mentioned above, other particle-specific properties can
affect the segregation process. In particular, the effects of
density have been studied the most. For ratios of the density
of the large to the small particles much larger than 1 (denser
large particles), the segregation effect could be reversed, and
the large particles would sinks to the bottom, producing the
so-called Reverse Brazil Nut Effect (RBNE) (Shinbrot and
Muzzio (1998), Hong et al. (2001)).

However, for particles of similar sizes but different den-
sities, both laboratory (Möbius et al. (2001), Shi et al.
(2007)) or numerical (Lim (2010)) experiments have shown
that the lighter particles tend to rise and form a pure layer on
the top of the system, while the heavier particles and some
of the lighter ones stay at the bottom and form a mixed
layer. In the Solar System, we might encounter bodies with
such a mixture of heavy and light particles. Cometary nuclei
are believed to be formed of a mix of icy and rocky material.
However, the intimacy of this mixture is still unknown, with

Figure 12. Snapshots of the initial and final state (after 1300

shakes) for a simulation under the low-gravity environment and
a floor velocity of vfloor = 0.05 m/s. (see movie5 and movie6 in
the supplementary material.

two possible scenarios: 1) every particle is made of a mix-
ture of ice and dust, and 2) there exist some particles mainly
formed by icy material and some others mainly formed by
rocky constituents that are mixed together.

We shall investigate the behavior of a mixture of light
and heavy particles under different gravity environments.

For the simulations we create a 3D box similar to the
previous one, with a 6 × 6 m base and a height of 150 m.
The box is constructed with elastic mesh walls. On the floor
we glue a set of 12 × 12 small balls of radius R1 = 0.25 m
and density ρ = 2000 kg/m3. There are 500 light balls with
a normal distribution of radii (mean radius R1 = 0.25 m,
standard deviation σ = 0.01m) and density ρ = 500 kg/m3.
On top of them, there are 500 heavy balls with the same dis-
tribution of radii and density ρ = 2000 kg/m3. At the be-
ginning of the simulations the balls are placed sparsely, the
light balls at the bottom and the heavy ones on top. They
free fall and settle down before starting the floor shaking.

Elastic parameters of the particles are the same for both
types of particles and similar to the ones used in the previous
tests for all the particles: Y = 1010 Pa, A = 10−3 s−1,
ν = 0.3, κ = 0.4, µ = 0.6, K = 109 Pa.

The floor is displaced with a staircase function in a sim-
ilar way as in the previous set of simulations.

Two gravity environments were tested: the Earth’s sur-
face gravity and a very-low gravity environment like the sur-
face of comet P/Hartley 2.

Figure 12 presents snapshots of the initial and final state
(after 1300 shakes) for a simulation under the low-gravity
environment and a floor velocity of vfloor = 0.05 m/s. In
the supplementary material we include movies with the com-
plete simulations (movie5 corresponds to the simulation un-
der Earth’s gravity and vfloor = 3 m/s; movie6 corresponds
to the simulation under low gravity and vfloor = 0.05 m/s.
Note that in these movies the camera moves with the floor,
therefore it seems that the floor is always located in the same
position, but it really is moving with the staircase function
described above).

At every snapshot, we compute the median height of the
light and heavy particles, respectively. These median heights
are plotted as a function of the number of shakes in Figure
13 a) for the Earth’s gravity simulations, and b) for the low-
gravity ones. For each simulation there are two lines: the one
that starts on top corresponds to the heavy particles and the
one that starts at the bottom to the light ones. In the Earth
environment simulations, the lines do not cross for the two
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Figure 13. The median height of the light and heavy particles
are plotted as a function of the number of shakes for different floor
velocities and under different gravity environments: a) Earth, b)

low-gravity like P/Hartley 2. The legends correspond to the floor
velocities (vfloor). For each simulation there are two lines: the
one that starts on top corresponds to the medium height of the
heavy particles (labeled with h) and the one that starts at the

bottom to the medium height of the light ones (labeled with l)

lowest floor velocities: vfloor = {1, 3} m/s; therefore, the
particles do not overturn the initial segregation. Though, for
vfloor = 3 m/s, the lines start to approach. However, for
the highest floor velocities, i.e. vfloor = 5 m/s, the lines
cross at an early stage of the simulation after which they
remain almost parallel. Most of the light particles move to
the top and most of the heavy ones sink to the bottom; the
end state is similar to the one seen in Figure 12 for the low-
gravity simulations. Due to the strong shakes, the particles
suffer large displacements, but, in a statistical sense, the two
set of particles are segregated. A density segregation is then
observed, although it is not complete.

The results of the simulations under a low-gravity envi-
ronment are presented in Figure 13b. The lines for the light
and heavy particles median height do cross for the three
studied floor velocities (v floor = {0.03, 0.05, 0.1} m/s),
although for the lowest velocity the simulations do not last
long enough to reach the stable stage where the median
heights reach almost a stable value.

Note that in both gravity environments, the density seg-
regation is effective for floor’s velocity over a threshold sim-
ilar to the ones of the size segregation effect of Section 3.

5 PARTICLE LIFTING AND EJECTION

Let us consider the following simple experiment: we have a
layer of material that is uniformly shocked from the bot-
tom. The motivation of this experiment is to consider what
would happen if a seismic wave, generated somewhere in a
body and propagating through it, reaches another region of
the body from below. What would happen with material
deposit on the surface? Let us take into account three dif-
ferent materials: a solid block, a compressible fluid and a set
of grains. The outcome of the experiment will be different
depending on the material. When the seismic wave knocks
the solid block, the block is pushed upward. It starts to move
upward, forming a gap between the layer’s bottom and the
floor. In the case of a layer of compressible fluid, an elas-
tic p-wave is transmitted through it, producing compression
and rarefaction of the material.

But, what happens in the case of a layer of grains? Be-
fore presenting the results of some simulations, let us re-

consider the simulations of Newton’s cradle with Hertzian
viscoelastic spheres. We have seen that after the first par-
ticle knocks the second one from the right, all the particles
move to the left. Particle #4, the last one on the row, moves
faster, the next one to the right moves slower and so forth.
Therefore, the whole set of particles move in the same direc-
tion, but they do not do it as a compact set, the particles
separate from each other.

We perform a first set of simulations with a homoge-
neous set of particles. A 3D box with a base of 7.5× 7.5 m
is filled with 15 × 15 = 225 particles glued to the bottom,
with a radius R = 0.25 m. We create 2744 particles with a
mean radius R1 = 0.25 m, standard deviation σ = 0.01 m
and density ρ = 3000 kg/m3. To generate the initial condi-
tions for the simulations, these particles are located a few
cm from the bottom and they free fall under the different
gravity environments until they settle down.

Elastic parameters of all the particles are similar to the
ones used in the previous tests for all the particles: Y =
1010 Pa, A = 10−3 s−1, ν = 0.3, κ = 0.4, µ = 0.6, K =
109 Pa.

With the initial conditions generated above, we run the
following experiment: after a given time (tsep), the floor is
vertically displaced at a certain speed (vfloor) for a short
interval (dtshake), only one time. Two gravity environments
are used for the simulations: Earth’s surface and the low-
gravity environment of Itokawa. For the Earth’s simulations
we use the following set of parameters: tsep = 1 s, vfloor =
{1, 3, 10} m/s, dtshake = 0.1 s. At every snapshot, we sort
the particles by their height respect to the floor, and we
compute the height of the particles at the 10% (h10) and 90%
(h90) percentile. In Figure 14 we plot the difference of these
two quantities (h90 − h10) for the different floor velocities.
We observe that these differences increase with time up to a
certain instant when the particles fall back. Therefore, the
particles are not moving as a compact set, rather, the upper
particles are moving faster and the particles separate from
each other. The upper particles can reach velocities larger
than the floor’s velocity; e.g. in the case of vfloor = 10 m/s,
the 10% fastest particles reach velocities of ∼ 17 m/s just
after the end of the floor’s displacement. We observe that
the upper particles are lifted at considerable heights before
they fall back.

Similar results are obtained in low-gravity simula-
tions, using the following set of parameters: tsep = 10 s,
vfloor = {0.01, 0.03, 0.1} m/s, dtshake = 0.1 s. The up-
per particles move faster and they can reach velocities up
to ∼ 0.02, 0.05, 0.2 m/s with respect to the floor veloci-
ties. Note that the escape velocity in this environment is
vesc = 0.17 m/s, therefore the fastest ejection velocities of
the lifted particles are higher than vesc. We run another
experiment: on top of the layer of particles with mean ra-
dius R1 ∼ 0.25 m, we deposit a layer of 2700 smaller parti-
cles, with mean radius R2 = 0.1 m and standard deviation
σ = 0.01m. The rest of the physical parameters are the same
as for the bigger particles. The aim of this experiment is to
check whether the small particles are ejected with higher
velocities than the big ones. As in the previous simulations,
we order the particles in increasing height. We compute the
height of the 90% percentile of the big (hb,90) and small par-
ticles (hs,90). Although the small particles on top of the big
ones tend to separate, the differences in the velocities are
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Figure 14. Lifting of particles under Earth gravity. At every

snapshot, we sort the particles by their height respect to the floor,
and we compute the height of the 10% (h10) and 90% (h90) per-
centile. We plot the difference of these two quantities (h90 −h10)
for the different floor velocities.
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Figure 15. The maximum height of the particles as a function
of the simulated time for the case of the low-gravity environment
and different floor velocities.

relatively small. There is no significant ejection of the small
particles.

Another relevant result regarding the lifting and ejec-
tion of particles from the surface due to an incoming shock
from below, can be obtained from the Brazil nut effect sim-
ulations presented in Section 3. In the animations produced
with a sequence of snapshots for the simulations where the
segregation process was effective, we observe many particles
lifted at considerable heights. In Figure 15 we plot the max-
imum height of the particles as a function of the simulated
time for the case of the low-gravity environment and dif-
ferent floor velocities. Note that the ejection velocities the
fastest particles can acquire are comparable to the floor’s
displacement velocities, and even, a little bit higher. For a
floor velocity of 0.1 m/s, the particles can reach an ejection
velocity higher than the escape velocity at the surface.

Taking into consideration the previous results, we con-
clude that a layer shocked from below would produce the lift-
ing of particles at the surface if the displacement of the bot-
tom exceeds a certain velocity threshold. Particles can ac-
quire vertical velocities comparable to the displacement ve-
locity of the bottom. For very low-gravity environments, this

velocity could be comparable to the escape velocity at the
surface. The particles could enter in sub-orbital or orbital
flights, creating a cloud of gravitational weakly bounded par-
ticles around the object.

6 GLOBAL SHAKING DUE TO IMPACTS
AND EXPLOSIONS

In the previous sections we have shown that several physi-
cal processes can occur in a layer of granular media when it
is shocked from below: size and density segregation, lifting
and ejection of particles. A big quake in a distant point could
produce such a shock. The quake could be produced by an-
other small object impacting the body or by the release of
some internal stress. Interplanetary impacts typically occur
at velocities of several km/s. These are hypervelocity im-
pacts, i.e. impacts with velocities that are above the sound
speed in the target material, which give rise to physical de-
formation of the target, heating and shock waves spreading
out from the impact point. The DEM algorithms described
above can not successfully reproduce these set of phenom-
ena. Therefore, we have to implement a different approach
if we are interested in understanding the effect of an impact
induced shock wave passing through a granular media.

Let’s consider a km-size agglomerated body, formed by
manym-size boulders. We raise the following question: what
happens if a small projectile impacts in such an object at
distances far from the impact point? Or alternatively, what
happens if a large amount of kinetic energy is released in
a small volume close to the surface of such an object? In
order to answer these questions we run the following set of
simulations. We fill a sphere of radius 250 and 1000 m with
small spheres of a given size range, using the configurations,
number of moving particles, and total mass listed in Table
2. For each sphere, we fill the volume with two different dis-
tributions of small spheres: one with ∼ 90, 000 particles and
another one with a larger number of particles ∼ 700, 000. We
try to make the total mass of the moving particles similar
for each of the studied radii.

A time step of dt = 10−4 s is used in all the simulations.
The simulations are run in a cluster with Intel Xeon multi-
core processors (Model E5410, at 2.33 GHz, with 12MB
Cache). For cases B and D we use up to 8 cores. In these
cases, a simulation of 10 s takes ∼ 20 hr of CPU-time in
each core.

Since we can not successfully simulate the physics of a
hypervelocity impact during the very short initial stages, we
implemented another approach. At a given point on the sur-
face we select a certain number of particles of the body that
are close to this place. Each particle has at the beginning
of the simulation a velocity along the radial vector toward
the centre. We substitute the impact by a near-surface un-
derground explosion, where several particles are released at
a given speed. For each set of configurations listed in Table
2, we run simulations with initial particle velocities of 100
m/s and 500 m/s. These velocities are well below the sound
speed in the target material.

Since these initial conditions would correspond to a
stage after the impact where some energy has already been
spent in the compression, fracturing and heating of the tar-
get material, we cannot equal the sum of the kinetic en-
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Table 2. Parameters for the simulations of underground explosions

Case A B C D

Parameter Radius Radius Radius Radius
250 m 250 m 1000 m 1000 m

Size range of spheres (m) 2.5 - 12.5 1 - 10 10 - 50 5 - 25
Number of particles 88570 783552 89144 688443
Porosity 0.31 0.22 0.31 0.31
Total Mass (1012kg) 0.135 0.152 8.66 8.63

Escape velocity at surface (m/s) 0.269 0.285 1.075 1.073
Number of initially moving particles 10 140 10 200
Mass of moving particles (106kg) 21 21 599 608

Energy-equivalent projectile radius (m) for v = 100m/s 9.88 0.88 2.67 2.68
Energy-equivalent projectile radius (m) for v = 500m/s 2.57 2.56 7.82 7.85

Momentum-equivalent projectile radius (m) for v = 100m/s 3.26 3.23 9.84 9.89
Momentum-equivalent projectile radius (m) for v = 500m/s 5.53 5.52 16.83 16.92
Ratio Kinetic Energy / Potential Energy for v = 100 m/s 36 29 1 1
Ratio Kinetic Energy / Potential Energy for v = 500 m/s 907 710 25 26

Specific energy Q∗ (J/kg) for v = 100 m/s 0.79 0.69 0.35 0.35
Specific energy Q∗ (J/kg) for v = 500 m/s 20 17 8.6 8.8

ergy of the moving particles with the kinetic energy of the
impactor. However, we can provide a lower limit to the ki-
netic energy of the impactor by assuming efficiency factor
ϵKE = 1, or a corresponding lower limit of the impactor
size for a given impact velocity. In Table 2, we also present
the radius of the equivalent projectile for the two set of ini-
tial particle velocities, assuming an energy efficiency factor
ϵKE = 1 and an impact velocity of 5 km/s. For lower values
of the efficiency factor, the projectile radius would scale with
ϵ
−1/3
KE . As we have seen in the simulations of the Newton’s
cradle with viscoelastic interactions, there is a considerable
loss of kinetic energy after a series of collisions, although
the total linear momentum is conserved. As far as we know,
there is very limited data on the transfer of momentum in
hypervelocity impacts, and we do not know the efficiency
factor of this transfer (ϵLM ). A similar estimate of the lower
limit for the impactor size can be done by assuming a mo-
mentum efficiency factor ϵLM = 1 and an impact velocity of
5 km/s. In Table 2, we present the radius of the equivalent
projectile for the two set of initial particle velocities. The
projectile radius would scale with ϵ

−1/3
LM .

The location of the explosion is always at the sur-
face and with angular coordinates (latitude = 45deg ,
longitude = 45deg). In Figure 16 we present snapshots
showing the propagation of the wave into the interior, by
using slices passing through the centre of the sphere, the
explosion point and the poles. Figure 16 a and b correspond
to the simulations with body radius of 250 m, the largest
number of particles (N = 783552) and particles velocities
of 100 m/s (case B-100). Snapshot a is at 0.4 s after the
explosion and b is at 2 s. The particles are coloured using a
colour bar that scales with the modulus of the velocity. On
the other hand, Figure 16c and d correspond to the simu-
lations with body radius of 1000 m, the largest number of
particles (N = 688443) and particles velocities of 500 m/s
(case D-500). Snapshot c is at 3 s after the explosion and d
is at 6 s. In the supplementary material we present movies
of these simulations. (movie7 corresponds to the case B-100

Figure 16. Snapshots of the sphere explosions simulations. These
are slices passing through the centre of the sphere, the explosion
point and the poles. Snapshots a) and b) correspond to the simu-

lations with body radius of 250 m, the largest number of particles
(N = 783552) and particles velocities of 100 m/s (case B-100).
Snapshot a is at 0.4 s after the explosion and b is at 2 s. The parti-
cles are coloured using a colour bar that scales with the modulus

of the velocity. Snapshots c) and d) correspond to the simula-
tions with body radius of 1000 m, the largest number of particles
(N = 688443) and particles velocities of 500 m/s (case D-500).
Snapshot c is at 3 s after the explosion and d is at 6 s. (see movies

in the supplementary material)

m/s, movie8 to case B-500 m/s, movie9 to case D-100 m/s,
and movie10 to case D-500 m/s. In the movies we observed
the variation of the velocity of the particles in a slice pass-
ing through the centre of the sphere, the explosion point and
the poles. The particles are coloured using a colour bar that
scales with the modulus of the velocity.

We note that a shock front with a spherical shape prop-
agates to the interior from the explosion point. On the sur-
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face, there appears a layer of fast moving particles that ex-
tends until it intersects with the spherical front, creating in-
side the volume limited by the surface layer and the spherical
front, a cavity of slow moving particles. The velocity of the
propagation front has a weak dependence on the velocity of
the initial particles. For example, in the simulations of the
smaller body (case B-100), the propagation shock requires
1.8 s to reach the antipodes of the explosion point, implying
a velocity of 278 m/s. In the case B-500, the required time
is 1.2 s, and the velocity 416 m/s. For the largest body, the
figures are: case D-100: time 9.6 s, velocity 208 m/s; case
D-500: time 5.8 s, velocity 435 m/s. Although there is an
increase in the initial velocity of the moving particles of a
factor of 5 among the cases, the velocity of the propagation
shock has an in increase of ∼ 2. The velocity of the propaga-
tion shock is quite constant while the shock travels through
the interior.

We are interested in the effects of the explosion at large
distances from the explosion point. The body is divided in 8
quadrants. The explosion occurs on the surface at the cen-
tre of the first quadrant (in Cartesian coordinates the first
quadrant is: x > 0 & y > 0 & z > 0; and the explosion
point is at: x = y = z = R/

√
3, R - radius). We analyse the

distribution of ejection velocities of the particles close to the
surface (r > 0.8R) on the other 7 quadrants. Histograms of
these distributions are presented in Figure 17 a and b. In
Figure 17a there are two overlapping histograms which cor-
respond to the cases B-100 and B-500, while in Figure 17b,
they correspond to the cases D-100 and D-500. A vertical
line marking the escape velocity for each body is included
in the plots. Note that for the smallest object and for both
initial velocities, there is a significant fraction of particles
that acquire ejection velocities over the escape limit. Con-
sidering the total fraction of particles with velocities over
this threshold (not only the ones near the surface), we ob-
tain values of 18% in the case B-100, and 81% in the case
B-500. In the case of the largest body, there is a significant
fraction of escaping particles only for the largest initial ve-
locity. The total fraction of escaping particles are 0.6% in the
case D-100, and 100% in the case D-500. For the simulations
with initial velocities of 500 m/s, there is a total disruption
of both bodies (> 50% of the mass is ejected at velocities
over the escape one). It is out of the scope of this paper to
derive the disruption laws for this type of experiments; we
just mention that with a set of experiments like the previ-
ous ones, we could obtain the kinetic energy threshold over
which the explosions lead to a total disruption of the body
as a function of size. In Table 2 we also include the ratio
between the kinetic energy of the moving particles over the
potential energy of the body and the specific energy (de-
fined as the deposited energy per unit mass). Housen and
Holsapple (1990) have defined the critical specific energy
(Q∗) as the energy per unit mass necessary to catastrophi-
cally disrupt a body. Ryan (2000) presents a plot comparing
different estimates of Q∗ by several authors as a function of
the target radius. Let us note the fact that the largest body
(R = 1000 m) is more disrupted than the smallest body
(R = 250 m), although the specific energy is lower, it is in
agreement with the dip in the Q∗ vs R plot (Ryan (2000))
in this radius range.

Except for the case of low velocity explosions for the
large body, in all the other simulations, a fraction of the

0 0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

100

500

Velocity (m/s)

F
ra

c
ti

o
n

0 2 4 6 8 10
0

1

2

3

4

5

6

7
x 10

−3

100

500

Velocity (m/s)

F
ra

c
ti

o
n

a b

Figure 17. The distribution of the ejection velocity of the parti-

cles for the simulated explosion. a) Simulations with body radius
of 250 m and the largest number of particles (N = 783552) (case
B). Two histograms are presented for initial velocities of 100 and
500 m/s. b) Simulations with body radius of 1000 m and the

largest number of particles (N = 688443) (case D). Two his-
tograms for initial velocities of 100 and 500 m/s. In each plot, a
vertical dashed line is drawn at the value of the escape velocity
at the surface.

near surface particles far from the explosion point acquire
velocities over the escape one (see Figure 17). Therefore, an
explosion would induce the ejection of particles from the sur-
face at low velocities. These particles could either enter into
orbit around the body or slowly escape from it, producing a
cloud of fine particles that may take many days before disap-
pearing. This result is complementary to the one obtained
in Section 5 regarding the lifting and ejection of particles
produced by a shake coming from below the surface.

In the case of the smallest body, even the low velocity
explosions would induce displacement velocities over several
tenths of m/s on many near surface particles far from the
explosion point (see Figure 17). This displacement would
produce a shake coming from below, similar to the shakes
simulated in Section 3. The surface gravity of the smallest
body is similar to the surface gravity used in the low-gravity
simulations of Section 3, and for the largest body the con-
ditions are similar to the simulation of Eros. Looking back
to Figure 16, we conclude that explosion events like the one
produced in our simulations would be enough to induce the
shaking required to produce size and density segregation on
the surface of these bodies.

This process of shaking the entire object after an im-
pact is suitable for small bodies where the escape velocity is
comparable to the impact induced displacement velocity at
large distance from the impact point. Further work should
study up to which body sizes the shaking process is expected
to occur.

7 CONCLUSIONS AND APPLICATIONS OF
THE RESULTS

The main objective of this paper is to present the applica-
tions of Discrete Element Methods for the study of the phys-
ical evolution of agglomerates of rocks under low-gravity en-
vironments. We have presented some initial results regard-
ing process like size and density segregation due to repeated
shakings or knocks, the lifting and ejections of particles from
the surface due to an incoming shock and the effect of a sur-
face explosion on a spherical agglomerated body. We recall
that our shaking process is due to repeated set of knocks.
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The main conclusions of these preliminary results are:

• A shaking induced size segregation –the so-called Brazil
nut effect–does occur even in the low-gravity environments
of the surface of small Solar Systems bodies, like km-size
asteroids and comets.

• A shaking induced density segregation is also observed
in these environments, although it is not complete.

• A particle layer shocked from below would produce the
lifting of particles at the surface, which can acquire vertical
velocities comparable to the surface escape velocity in very
low-gravity environments.

• A surface explosion, like the one produced by an impact
or the release of energy by the liberation of internal stresses
or by the re accommodation of material, would induce a
shock transmitted through the entire body, and the ejection
of surface particles at low velocities at distances far from
the explosion point. This process is only suitable for small
bodies.

The application of these results to real cases will be the
subject of further papers, but we foresee some situations
where the results presented here will be relevant:

• The internal structure of asteroid Itokawa and similar
small asteroids formed as an agglomerate of m-size parti-
cles, and the relevance of the Brazil nut effect produced by
repeated impacts.

• The non-uniform distribution of active zones in comets,
like P/Hartley 2, and the internal density segregation of icy
and rocky boulders produced by shakes caused by explosions
and impacts.

• The formation of dust clouds at low escaping velocities
after an impact onto a km-size asteroid.

The supplement online material can be accesed at:
http://www.astronomia.edu.uy/Publications/

Tancredi/Granular_Physics/
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SUPPLEMENTARY ONLINE MATERIAL FOR
”GRANULAR PHYSICS IN LOW-GRAVITY
ENVIRONMENTS USING DEM”

Hereby you will find a set of movies included in the article
”Granular physics in low-gravity environments using DEM”
by Tancredi et al. (MNRAS, 2011).

The supplement online material can be accesed at:
http://www.astronomia.edu.uy/Publications/

Tancredi/Granular_Physics/

SIZE SEGREGATION (THE BRAZIL NUT
EFFECT) SIMULATIONS

A 3D box is constructed with elastic mesh walls. The box
has a base of 6×6m and a height of 150m. A set of 12×12m
small balls of radius R1 = 0.25 m are glued to the floor. The
big ball has a radius R2 = 0.75 m, and on top of it, there
are 1000 small balls with radii R1 ∼ 0.25 m.

The floor is displaced with a staircase function as de-
scribed in the paper with different velocities.

We present movies for two set of simulations: a) under
Earth’s gravity (surface gravity g = 9.81m/s2) and a floor’s
velocity (vfloor = 5 m/s), b) in a low-gravity environment
(g = 10−4 m/s2) and (vfloor = 0.05 m/s).

movie1.avi is a movie with all the spheres drawn and
movie2.avi with the small spheres erased for the first simu-
lation. The movies correspond to 100 seconds of simulated
time and 50 shakes.

While movie3.avi and movie4.avi correspond to the sec-
ond one. The movies correspond to 10000 seconds of simu-
lated time and 667 shakes.

DENSITY SEGREGATION SIMULATIONS

A 3D box similar to the previous one is created, with a
6 × 6 m base and a height of 150 m. The box is con-
structed with elastic mesh walls. On the floor we glue a
set of 12 × 12 small balls of radius R1 = 0.25 m and den-
sity ρ = 2000 kg/m3. There are 500 light balls with radii
R1 ∼ 0.25 m and density ρ = 500 kg/m3. On top of them,
there are 500 heavy balls with similar radii and density
ρ = 2000 kg/m3. At the beginning of the simulations the
balls are placed sparsely, the light balls at the bottom and
the heavy ones on top. They free fall and settle down before
starting the floor shaking.

The floor is displaced with a staircase function in a sim-
ilar way as in the previous set of simulations.

We present movies for two set of simulations: a) under
Earth’s gravity (surface gravity g = 9.81m/s2) and a floor’s
velocity (vfloor = 3 m/s), b) in a low-gravity environment
(g = 10−4 m/s2) and (vfloor = 0.05 m/s).

movie5.avi is a movie of the first simulation, while
movie6.avi corresponds to the second one. The movie5 cor-
responds to 1000 seconds of simulated time and 500 shakes,
while the movie6 corresponds to 20000 seconds of simulated
time and 1333 shakes.

Note that in these movies the camera moves with the
floor, therefore it seems that the floor is always located in
the same position, but it really is moving with the staircase
function described above.

In movie5 the density segregation is not reached; while
in movie6, most of the light particles move to the top and
most of the heavy ones sink to the bottom.

GLOBAL SHAKING DUE TO IMPACTS AND
EXPLOSIONS

We consider a km-size agglomerated body, formed by many
small size boulders. We fill a sphere of radius 250 and 1000
m with ∼ 700, 000 small spheres of a given size range (1-
10 m-size boulders in the case of the small body, and 5-25
m-size boulders for the big body).

At a given point on the surface we select a certain num-
ber of particles of the body that are close to this place.
Each particle has at the beginning of the simulation a veloc-
ity along the radial vector toward the centre. The location
of the explosion is always at the surface and with angular
coordinates (latitude = 45deg , longitude = 45deg). We
run simulations with initial particle velocities of 100 m/s
and 500 m/s.

In the movies we present snapshots showing the propa-
gation of the wave into the interior. These are slices passing
through the centre of the sphere, the explosion point and
the poles. The particles are coloured using a colour bar that
scales with the modulus of the velocity.

movie7.avi and movie8.avi correspond to the simulation
with a body of radius 250m,N = 783552 small particles and
140 particles with initial velocities of 100 m/s (case B-100)
and 500 m/s (case B-500), respectively.

movie9.avi and movie10.avi correspond to the simula-
tion with a body of radius 1000 m, N = 688443 small parti-
cles and 200 particles with velocities of 100m/s (case D-100)
and 500 m/s (case D-500). All the movies correspond to 10
seconds of simulated time.
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