A criterion to classify asteroids and comets based on the orbital parameters


The classification criterion between asteroids and comets has evolved in recent decades, but the main distinction remains unchanged. Comets present gas and dust ejection from the surface at some point of their orbits, therefore, these objects are considered to be active. On the other hand, asteroids do not show any kind of large scale gas and dust ejection, they are inert. Nevertheless, this classification scheme is impractical when we have more than 500,000 asteroids already discovered. In addition, comets are not active all along their orbits. In order for a comet to display activity at present or in the recent past in the inner region of the Solar System (heliocentric distance <2 AU), the cometary orbit must be unstable in the time scale on the order of ten thousands of years; otherwise, the object should have completely consumed its volatile component. Close encounters with the most massive planets is the only mechanism that could produce "macroscopic" instabilities on a short time scale. The macroscopic changes in the orbital elements can be detected in a numerical integration of the dynamical evolution of the object over a time scale of several thousand years. This procedure to identify asteroids in cometary-like orbits is also impractical because it would require months of computing time. Therefore, a classification scheme based on the orbital elements to identify the border cases between the asteroid and comet populations is urgently required.

We present a criterion to classify asteroids and comets and to find the border case based on the Tisserand's parameter, the Minimum Orbital Intersection Distance (MOID), and considering some information regarding the aphelion and perihelion distances. Objects in mean-motion are disregarded. After applying a filter to the sample of over half a million asteroids already discovered to select the precise orbits and to the sample of 487 short-period comets, we apply the proposed classification criterion. The resulting sample consists of ∼331 Asteroids in Cometary Orbits (ACOs). The ACOs are further classified in subclasses similar to the cometary classification. There are 436 Jupiter Family Comets and 203 ACOs of the Jupiter Family type. This new criterion is more strict that the criteria used by other authors to identify ACOs; nonetheless, with the new criterion we ensure that the ACOs have a chaotic dynamical evolution similar to the periodic comets. The discovered dormant or extinct comets seems, if they exist at all, to be a small fraction of the active comets.

We also analyse the available photometric data of ACOs to identify possible large brightness variations. Among the sample of ACOs, there is only one object with brightness variations typical of an active comet: 174P/(60558) Echeclus. But this object has already been double classified as asteroid and comet.

 

Gonzalo Tancredi

Departamento de Astronomía, Facultad de Ciencias, Iguá 4225
11400. Montevideo
URUGUAY
gonzalo_at_fisica.edu.uy